
CS425 Homework Set 2 1

CS425: Computer Systems Architecture

Homework Problem Set 2

Assignment Date: Friday 01/11/2024

Due Date: Wednesday 13/11/2024 23:59

Instructions: Solve all problems, create a .pdf file and send it via e-mail to HY425 course e-mail

(hy425@csd.uoc.gr). Set the e-mail subject: HY425 - Homework 2

Problem 1 (50 points)

The following code is known as the DAXPY loop (Double-precision AX Plus Y) from the BLAS

package (Basic Linear Algebra Subprograms), where x and y are arrays of doubles and a is a double:

for (i=0 ; i<N ; i++){

 y[i] = a * x[i] + y[i];

}

Assume that our compiler has generated the following RISC assembly code:

[note: R1 keeps x[] index , R2 keeps y[] index, R4 keeps x[N-1] index, F0 keeps a]

Instruction Notes

Loop: LD F2, 0(R1) load x[i] into F2

 MULTD F4, F2, F0 put a*x[i] into F4

 LD F6, 0(R2) load y[i] into F6

 ADDD F6, F4, F6 put a*x[i] + y[i] into F6

 SD F6, 0(R2) store F6 into y[i]

 ADDI R1, R1, #8 increment x index (R1)

 ADDI R2, R2, #8 increment y index (R2)

 SGT R3, R1, R4 test if loop done

 BEQZ R3, Loop loop if not done

 NOP branch delay slot

Further assume the following latencies of a typical 5-stage in-order fully-pipelined RISC processor

(IF, ID, EX, MEM, WB) and that bypassing is applied whenever possible:

Operation(s) Stage Latency (cycles)

All Integer EX 1

LD MEM 2

SD MEM 1

ADDD EX 3

MULTD EX 4

i. Show how the RISC processor would execute each loop iteration (indicate stalls) and calculate

the total number of cycles required to run 1000 iterations of the loop.

ii. Try to rearrange the instructions in order to reduce the number of stalls and then calculate the total

number of cycles required to run 1000 iterations of the loop. Compare the performance with (i).

iii. Loop-unroll as many iterations needed, in order to reduce the number of stalls and then calculate

the total number of cycles required to run 1000 iterations of the loop. Compare the performance

now with (i) and (ii).

iv. Apply the technique of software pipelining and then calculate the total number of cycles required

to run 1000 iterations of the loop. Compare the performance now with (i), (ii) and (iii). Do not

forget the startup and cleanup code!

mailto:hy425@csd.uoc.gr

CS425 Homework Set 2 2

Problem 2 (50 points)

Let’s consider the out-of-order microarchitecture shown in the figure below. Assume that we have a

single the Reservation Station (RS) with “many slots” and that the ALUs can do all arithmetic ops

(MULTD, DIVD, ADDD, ADDI, SUB) and branches. The RS can dispatch at most one operation to

each functional unit per cycle (one op to each ALU plus one memory op to the LD/ST unit) – i.e. all

functional units are pipelined and may complete successive instructions out-of-order.

i. Assume that all instructions from the Loop sequence provided below are already present in the

RS (have been issued in-order), with no renaming having been done. Highlight any instructions in

the code where register renaming would improve performance. Assume an infinite amount of registers

and produce the register-renamed version of the code by using the following notation: the register

F10 becomes F10a after the first renaming, F10a becomes F10b after the second renaming, etc. Hint:

Look for RAW, WAR and WAW hazards. Assume the functional unit latencies on the table below.

Loop: LD F2,0(Rx)

I0: DIVD F8,F2,F0

I1: MULTD F2,F6,F2

I2: LD F4,0(Ry)

I3: ADDD F4,F0,F4

I4: ADDD F10,F8,F2

I5: ADDI Rx,Rx,#8

I6: ADDI Ry,Ry,#8

I7: SD F4, 0(Ry)

I8: SD F10,0(Rx)

I9: SUB R20,R4,Rx

I10: BNZ R20,Loop

Functional Unit Latencies

Memory LD 2

Memory SD 1

Integer ADD, SUB 1

Branches 1

ADDD 3

MULTD 4

DIVD 6

ii. Assume that the complete register-renamed version of the code from part (i) is already present in

the RS in clock cycle N (have been issued in-order and the values of the “ready” registers have been

read) and assume the given functional unit latencies. Show how the RS should dispatch these

instructions out-of-order, cycle-by-cycle, to obtain optimal performance on this code. Also assume

that results must be written into the RS before they’re available for use, i.e. no bypassing, and this

takes 1 clock cycle. How many clock cycles does the code sequence take?

iii. Part (ii) allows the RS to optimally schedule these instructions. But in reality, the whole instruction

sequence of interest is not usually present in the RS. Instead, various events clear the RS, and as a

new code sequence streams in from the decoder, the RS must choose to dispatch what it has. Suppose

that the RS is empty. In cycle 0 the first two register-renamed instructions of this sequence appear in

the RS. Assume it takes 1 clock cycle to dispatch any op and assume the given functional unit

latencies. Further assume that the front end (decoder/register-renamer) will continue to supply two

new instructions per clock cycle. Show the cycle-by-cycle order of dispatch of the RS. How many

clock cycles does this code sequence require now?

