
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2024

Thread Level Parallelism (TLP)

1

Multiple Issue

CPI = CPIIDEAL + StallsSTRUC + StallsRAW + StallsWAR + StallsWAW + StallsCONTROL

• Have to maintain:
⎻ Data Flow

⎻ Exception Behavior

CS425 - Vassilis Papaefstathiou

Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)

Scoreboard (reduce RAW stalls) Loop Unrolling

Register Renaming (reduce WAR & WAW stalls)

•Tomasulo

• Reorder buffer

SW pipelining

Branch Prediction (reduce control stalls) Trace Scheduling

Multiple Issue (CPI < 1)

Multithreading (CPI < 1)

2

Common Way of Designing Architectures

• Networking, single/multi-core processor, virtually any design:
⎻ Broadcasting: Use Common Data Bus or Point to point

⎻ Asynchronous communication between “processing stages” with
different throughputs (a processing stage can be a whole system, for
example router, switch, processor, or a simple block, for example IF, ID
stages). Use Elastic Buffer & Flow Control. For example instruction
buffer, reservation stations and reorder buffer

⎻ Faster clock: Pipelining. Split a stage in multiple stages. For example
split Issue stage (super-pipelining)

⎻ Higher Throughput: Parallel processing. For example superscalar.

⎻ Lower Latency: Forwarding/Bypassing

• A processor is a sophisticated design that follows the
“unwritten” design rules every architect should follow.

CS425 - Vassilis Papaefstathiou 3

Multithreading

• Difficult to continue to extract ILP from a single thread

• Many workloads can make use of thread-level parallelism (TLP)
⎻ TLP from multiprogramming (run independent sequential jobs)

⎻ TLP from multithreaded applications (run one job faster using parallel
threads)

• Multithreading uses TLP to improve utilization of a single
processor

CS425 - Vassilis Papaefstathiou 4

Pipeline Hazards

• Each instruction may depend on the next

• What can be done to cope with this?

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D

F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14

CS425 - Vassilis Papaefstathiou 5

Solution with Multithreading

• How can we guarantee no dependencies between instructions
in a pipeline?

⎻ One way is to interleave execution of instructions from different
program threads on same pipeline

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7), r5

T1: LW r5, 12(r1)

t9

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a

thread always

completes write-back

before next instruction

in same thread reads

register file

CS425 - Vassilis Papaefstathiou 6

Multithreaded RISC

• Have to carry thread select down to the pipeline to ensure that the correct
state bits are read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread

select

PC

1
PC

1
PC

1
PC

1

I$ IR
GPR1GPR1GPR1GPR1

X

Y

2

D$

CS425 - Vassilis Papaefstathiou 7

Multithreading Cost

• Each thread requires its own user state. Many CPU resources are split or shared!

– PC

– GPRs & Physical/HW registers

– Prefetch & Instruction buffers

– Reorder buffer

– Load/Store buffer

– Issue buffers

• Also, needs its own system state

– virtual memory page table base register

– exception handling registers

• Other costs?

• Take care of performance when executing in Single Thread (ST) mode!

CS425 - Vassilis Papaefstathiou 8

Thread Scheduling Policies

• Fixed interleaving (CDC 6600 PPUs, 1964)

– each of N threads executes one instruction every N cycles

– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)

– OS allocates S pipeline slots amongst N threads

– hardware performs fixed interleave over S slots, executing whichever
thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982) (Power 5)

– hardware keeps track of which threads are ready to go

– picks next thread to execute based on hardware priority scheme
CS425 - Vassilis Papaefstathiou 9

HW Multithreading alternatives

• Fine-Grain Multithreading

CS425 - Vassilis Papaefstathiou 10

HW Multithreading alternatives

• Fine-Grain Multithreading

CS425 - Vassilis Papaefstathiou 11

HW Multithreading alternatives

• Coarse-Grain Multithreading

CS425 - Vassilis Papaefstathiou 12

HW Multithreading alternatives

• Coarse-Grain Multithreading

Switch upon long upon long-latency events

CS425 - Vassilis Papaefstathiou 13

HW Multithreading alternatives

• Simultaneous Multithreading (SMT)

• Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one thread
at a time

• SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to enter
execution on same clock cycle. Gives better utilization of
machine resources.

CS425 - Vassilis Papaefstathiou 14

For most apps, most execution units are
idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,

“Simultaneous Multithreading:

Maximizing On-chip Parallelism,

ISCA 1995.

For an 8-way superscalar

CS425 - Vassilis Papaefstathiou 15

Superscalar Machine Efficiency

Issue width

Time

Completely idle cycle

(vertical waste)

Instruction issue

Partially filled cycle, i.e., IPC < 4

(horizontal waste)

CS425 - Vassilis Papaefstathiou 16

Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?

– removes vertical waste, but leaves some horizontal waste

Issue width

Time

Second thread interleaved

cycle-by-cycle

Instruction issue

Partially filled cycle, i.e., IPC < 4

(horizontal waste)

CS425 - Vassilis Papaefstathiou 17

Chip Multiprocessing (CMP)

• What is the effect of splitting into multiple processors?

– reduces horizontal waste,

– leaves some vertical waste, and

– puts upper limit on peak throughput of each thread → single thread execution is slower

Issue width

Time

CS425 - Vassilis Papaefstathiou 18

Ideal Superscalar Multithreading: SMT
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots with no restrictions

Issue width

Time

CS425 - Vassilis Papaefstathiou 19

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow instructions fetched
from different threads to issue simultaneously

• Utilize wide out-of-order superscalar processor issue queue to find
instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry required to
schedule from multiple threads

• Any single thread can utilize whole machine

• Shared HW mechanisms
• Large set of virtual registers can hold register sets of independent threads

• Renaming provides unique register identifiers to different threads

• Out-of-order completion of instructions from different threads allowed

• No cross-thread RAW, WAW, WAR hazards

• Separate re-order buffer per thread

CS425 - Vassilis Papaefstathiou 20

Summary: Multithreaded Categories

T
im

e
 (

p
ro

c
e
s
s
o
r

c
y
c
le

) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot
CS425 - Vassilis Papaefstathiou 21

IBM Power 4

CS425 - Vassilis Papaefstathiou 22

Single-threaded predecessor to

Power 5. 8 execution units in

out-of-order engine, each may

issue an instruction each cycle.

CS425 - Vassilis Papaefstathiou10/30/2007 23

Power 4

Power 5

2 fetch (PC),

2 initial decodes

2 commits

(architected

register sets)
23

Power 5 data flow ...

• Why only 2 threads? With 4, one of the shared resources (physical
registers, cache, memory bandwidth) would be prone to bottleneck

CS425 - Vassilis Papaefstathiou 24

Rename Registers and issue queue sizes

CS425 - Vassilis Papaefstathiou 25

Changes in Power 5 to support SMT

• Two separate program counters are used, one for each thread

• Added per thread load and store queues. Added virtual entries.

• The size of the BIQ (Branch Information Queue) remains at 16 entries but
split in two, with eight entries per thread.

• Added separate instruction prefetch and buffering per thread.

• Each logical register number has a thread bit appended and mapped as
usual. Increased the number of physical registers from 152 to 240

• Increased the size of FP issue queue.

• Shared global completion table (GCT). Two linked lists to implement in
order commit from the two threads.

• The Power5 core is about 24% larger than the Power4 core because of the
addition of SMT support

CS425 - Vassilis Papaefstathiou 26

Power 5 thread performance

• Priority is set by SW and
enforced by HW.

• Relative priority of each
thread controllable in
hardware.

• For balanced operation,
both threads run slower
than if they “owned” the
machine.

CS425 - Vassilis Papaefstathiou 27

Intel Hyper-Threading Technology

• Hyper-Threading Technology is SMT introduced by Intel. HTT has two logical processors,
with its own processor architectural state

• HTT duplicates the architectural state but not the main execution resources

• Transparent to OS: minimum requirement is symmetric multiprocessing (SMP) support

• SMP involves two or more identical processors connect to a single, shared main memory,
all I/O devices, controlled by single OS

CS425 - Vassilis Papaefstathiou 28

OS view
Reality

http://en.wikipedia.org/wiki/Architectural_state

Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)
⎻ Hyperthreading == SMT

• Logical processors share nearly all resources of the physical
processor
⎻ Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%

• When one logical processor is stalled, the other can progress
⎻ No logical processor can use all entries in queues when two threads

are active

• Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

CS425 - Vassilis Papaefstathiou 29

Pentium-4 Hyperthreading: Front End

CS425 - Vassilis Papaefstathiou 30

Resource divided

between logical CPUs

Resource shared

between logical CPUs

Pentium-4 Hyperthreading: Execution Pipe

CS425 - Vassilis Papaefstathiou 31

[Intel Technology Journal, Q1 2002]

Initial Performance of SMT

CS425 - Vassilis Papaefstathiou 32

Comparison of multiple-issue processors

CS425 - Vassilis Papaefstathiou 33

CS425 - Vassilis Papaefstathiou 34

SPEC INT rate

ILP Comparison of multiple-issue processors

CS425 - Vassilis Papaefstathiou 35

SPEC FP rate

ILP Comparison of multiple-issue processors

Measuring processor efficiency

CS425 - Vassilis Papaefstathiou 36

ILP Comparison of multiple-issue processors

CS425 - Vassilis Papaefstathiou 37

Best ILP approach?

CS425 - Vassilis Papaefstathiou 38

