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Multiple Issue

CPI = CPIIDEAL + StallsSTRUC + StallsRAW + StallsWAR + StallsWAW + StallsCONTROL

• Have to maintain:
⎻ Data Flow

⎻ Exception Behavior
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Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)

Scoreboard (reduce RAW stalls) Loop Unrolling

Register Renaming (reduce WAR & WAW stalls)

•Tomasulo

• Reorder buffer

SW pipelining

Branch Prediction (reduce control stalls) Trace Scheduling

Multiple Issue (CPI < 1)

Multithreading (CPI < 1)
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Common Way of Designing Architectures

• Networking, single/multi-core processor, virtually any design:
⎻ Broadcasting: Use Common Data Bus or Point to point

⎻ Asynchronous communication between “processing stages” with 
different throughputs (a processing stage can be a whole system, for 
example router, switch, processor, or a simple block, for example IF, ID 
stages). Use Elastic Buffer & Flow Control. For example instruction 
buffer, reservation stations and reorder buffer

⎻ Faster clock: Pipelining. Split a stage in multiple stages. For example 
split Issue stage (super-pipelining)

⎻ Higher Throughput: Parallel processing. For example superscalar.

⎻ Lower Latency: Forwarding/Bypassing

• A processor is a sophisticated design that follows the 
“unwritten” design rules every architect should follow. 
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Multithreading

• Difficult to continue to extract ILP from a single thread

• Many workloads can make use of thread-level parallelism (TLP)
⎻ TLP from multiprogramming (run independent sequential jobs)

⎻ TLP from multithreaded applications (run one job faster using parallel 
threads)

• Multithreading uses TLP to improve utilization of a single 
processor
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Pipeline Hazards

• Each instruction may depend on the next

• What can be done to cope with this?

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D

F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14
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Solution with Multithreading

• How can we guarantee no dependencies between instructions 
in a pipeline?

⎻ One way is to interleave execution of instructions from different 
program threads on same pipeline

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7),  r5

T1: LW r5, 12(r1)

t9

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a 

thread always 

completes write-back 

before next instruction 

in same thread reads 

register file
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Multithreaded RISC

• Have to carry thread select down to the pipeline to ensure that the correct 
state bits are read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread 

select

PC

1
PC

1
PC

1
PC

1

I$ IR
GPR1GPR1GPR1GPR1

X

Y

2

D$
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Multithreading Cost

• Each thread requires its own user state. Many CPU resources are split or shared! 

– PC

– GPRs & Physical/HW registers

– Prefetch & Instruction buffers

– Reorder buffer

– Load/Store buffer

– Issue buffers

• Also, needs its own system state

– virtual memory page table base register

– exception handling registers

• Other costs?

• Take care of performance when executing in Single Thread (ST) mode!
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Thread Scheduling Policies

• Fixed interleaving (CDC 6600 PPUs, 1964)

– each of N threads executes one instruction every N cycles

– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)

– OS allocates S pipeline slots amongst N threads

– hardware performs fixed interleave over S slots, executing whichever 
thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982) (Power 5)

– hardware keeps track of which threads are ready to go

– picks next thread to execute based on hardware priority scheme
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HW Multithreading alternatives

• Fine-Grain Multithreading
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HW Multithreading alternatives

• Fine-Grain Multithreading
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HW Multithreading alternatives

• Coarse-Grain Multithreading
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HW Multithreading alternatives

• Coarse-Grain Multithreading

Switch upon long upon long-latency events
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HW Multithreading alternatives

• Simultaneous Multithreading (SMT)

• Techniques presented so far have all been “vertical” 
multithreading where each pipeline stage works on one thread 
at a time

• SMT uses fine-grain control already present inside an OoO 
superscalar to allow instructions from multiple threads to enter 
execution on same clock cycle.  Gives better utilization of 
machine resources.
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For most apps, most execution units are 
idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,

“Simultaneous Multithreading: 

Maximizing On-chip Parallelism, 

ISCA 1995.

For an 8-way superscalar
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Superscalar Machine Efficiency

Issue width

Time

Completely idle cycle 

(vertical waste)

Instruction issue

Partially filled cycle, i.e., IPC < 4

(horizontal waste)
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Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?

– removes vertical waste, but leaves some horizontal waste

Issue width

Time

Second thread interleaved 

cycle-by-cycle

Instruction issue

Partially filled cycle, i.e., IPC < 4

(horizontal waste)
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Chip Multiprocessing (CMP)

• What is the effect of splitting into multiple processors?

– reduces horizontal waste, 

– leaves some vertical waste, and 

– puts upper limit on peak throughput of each thread → single thread execution is slower

Issue width

Time
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Ideal Superscalar Multithreading: SMT 
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots with no restrictions

Issue width

Time
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O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow instructions fetched 
from different threads to issue simultaneously

• Utilize wide out-of-order superscalar processor issue queue to find 
instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry required to 
schedule from multiple threads

• Any single thread can utilize whole machine

• Shared HW mechanisms
• Large set of virtual registers can hold register sets of independent threads

• Renaming provides unique register identifiers to different threads

• Out-of-order completion of instructions from different threads allowed

• No cross-thread RAW, WAW, WAR hazards

• Separate re-order buffer per thread
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Summary: Multithreaded Categories

T
im

e
 (

p
ro

c
e
s
s
o
r 

c
y
c
le

) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot
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IBM Power 4
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Single-threaded predecessor to 

Power 5.  8 execution units in

out-of-order engine, each may

issue an instruction each cycle.
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Power 4

Power 5

2 fetch (PC),

2 initial decodes

2 commits 

(architected 

register sets)
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Power 5 data flow ...

• Why only 2 threads? With 4, one of the shared resources (physical 
registers, cache, memory bandwidth) would be prone to bottleneck 
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Rename Registers and issue queue sizes
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Changes in Power 5 to support SMT

• Two separate program counters are used, one for each thread

• Added per thread load and store queues. Added virtual entries.

• The size of the BIQ (Branch Information Queue) remains at 16 entries but 
split in two, with eight entries per thread.

• Added separate instruction prefetch and buffering per thread.

• Each logical register number has a thread bit appended and mapped as 
usual. Increased the number of physical registers from 152 to 240

• Increased the size of FP issue queue.

• Shared global completion table (GCT). Two linked lists to implement in 
order commit from the two threads. 

• The Power5 core is about 24% larger than the Power4 core because of the 
addition of SMT support
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Power 5 thread performance

• Priority is set by SW and 
enforced by HW. 

• Relative priority of each 
thread controllable in 
hardware. 

• For balanced operation, 
both threads run slower 
than if they “owned” the 
machine.
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Intel Hyper-Threading Technology 

• Hyper-Threading Technology is SMT introduced by Intel. HTT has two logical processors, 
with its own processor architectural state

• HTT duplicates the architectural state but not the main execution resources

• Transparent to OS: minimum requirement is symmetric multiprocessing (SMP) support

• SMP involves two or more identical processors connect to a single, shared main memory, 
all I/O devices, controlled by single OS

CS425 - Vassilis Papaefstathiou 28

OS view
Reality 

http://en.wikipedia.org/wiki/Architectural_state


Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)
⎻ Hyperthreading == SMT

• Logical processors share nearly all resources of the physical 
processor
⎻ Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%

• When one logical processor is stalled, the other can progress
⎻ No logical processor can use all entries in queues when two threads 

are active

• Processor running only one active software thread runs at 
approximately same speed with or without hyperthreading
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Pentium-4 Hyperthreading: Front End
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Resource divided 

between logical CPUs

Resource shared 

between logical CPUs



Pentium-4 Hyperthreading: Execution Pipe
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[Intel Technology Journal, Q1 2002]



Initial Performance of SMT
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Comparison of multiple-issue processors
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SPEC INT rate

ILP Comparison of multiple-issue processors
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SPEC FP rate

ILP Comparison of multiple-issue processors



Measuring processor efficiency
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ILP Comparison of multiple-issue processors
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Best ILP approach?
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