
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2024

Vector Processors

1



Flynn’s Taxonomy of Computers

• Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966

• SISD: Single instruction operates on single data element

• SIMD: Single instruction operates on multiple data elements
⎻ Vector processor

• MISD: Multiple instructions operate on single data element
⎻ Closest form: systolic array processor, streaming processor

• MIMD: Multiple instructions operate on multiple data elements 
(multiple instruction streams)
⎻ Multiprocessor

⎻ Multithreaded processor
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Data Parallelism

• Concurrency arises from performing the same operation on different 
pieces of data
⎻ Single instruction multiple data (SIMD)

⎻ E.g., dot product of two vectors

• Contrast with data flow
⎻ Concurrency arises from executing different operations in parallel (in a data driven 

manner)

• Contrast with thread (“control”) parallelism
⎻ Concurrency arises from executing different threads of control in parallel

• SIMD exploits operation-level parallelism on different data
⎻ Same operation concurrently applied to different pieces of data

⎻ A form of ILP where instruction happens to be the same across data
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Vector Processors (1/2)

• A vector is a one-dimensional array of numbers

• Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

• A vector processor is one whose instructions operate on vectors 
rather than scalar (single data) values

• Basic requirements
⎻ Need to load/store vectors → vector registers (contain vectors)

⎻ Need to operate on vectors of different lengths → vector length register (VLEN)

⎻ Elements of a vector might be stored apart from each other in memory → vector stride 
register (VSTR)
o Stride: distance in memory between two elements of a vector
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Vector Processors (1/2)

• A vector instruction performs an operation on each element in 
consecutive cycles
⎻ Vector functional units are pipelined

⎻ Each pipeline stage operates on a different data element

• Vector instructions allow deeper pipelines
⎻ No intra-vector dependencies → no hardware interlocking needed 

within a vector

⎻ No control flow within a vector

⎻ Known stride allows easy address calculation for all vector elements
o Enables prefetching of vectors into registers/cache/memory
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Vector Processor Properties

• No dependencies within a vector 
⎻ Pipelining & parallelization work really well

⎻ Can have very deep pipelines, no dependencies! 

• Each instruction generates a lot of work 
⎻ Reduces instruction fetch bandwidth requirements

• Highly regular memory access pattern 

• No need to explicitly code loops 
⎻ Fewer branches in the instruction sequence

• Works well if parallelism is regular (data/SIMD parallelism)
⎻ Many vector operations

⎻ Very inefficient if parallelism is irregular
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Vector Processor Limitations

• Memory (bandwidth) can easily become a bottleneck when:
⎻ compute/memory operation balance is not maintained

⎻ data is not mapped appropriately to memory banks
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Vector Registers

• Each vector data register holds N M-bit values

• Vector control registers: VLEN, VSTR, VMASK

• Maximum VLEN can be N
⎻ Maximum number of elements stored in a vector register

• Vector Mask Register (VMASK)
⎻ Indicates which elements of vector to operate on

⎻ Set by vector test instructions

o e.g., VMASK[i] = (V
k
[i] == 0)
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide
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Vector Functional Units

• Use a deep pipeline to execute 
element operations
→ fast clock cycle

• Control of deep pipeline is simple 
because elements in vector are 
independent  

9
Slide credit: Krste Asanovic
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3

V1 * V2 → V3

Six stage multiply pipeline
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Vector Machine Organization (CRAY-1)

• CRAY-1

• Russell, “The CRAY-1 
computer system,” CACM 
1978.

• Scalar and vector modes

• 8 64-element vector registers

• 64-bits per element

• 16 memory banks

• 8 64-bit scalar registers

• 8 24-bit address registers
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Seymour Cray, the Father of Supercomputers
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"If you were plowing a field, which would you 

rather use: Two strong oxen or 1024 chickens?"

CS425 - Vassilis Papaefstathiou



Loading/Storing Vectors from/to Memory

• Requires loading/storing multiple elements

• Elements separated from each other by a constant distance (stride)
⎻ Assume stride = 1 for now

• Elements can be loaded in consecutive cycles if we can start the 
load of one element per cycle
⎻ Can sustain a throughput of one element per cycle

• Question: How do we achieve this with a memory that takes more 
than 1 cycle to access?

• Answer: Bank the memory; interleave the elements across banks
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Memory Banking

• Memory is divided into banks that can be accessed independently; banks share 
address and data buses (to minimize pin cost)

• Can start and complete one bank access per cycle

• Can sustain N parallel accesses if all N go to different banks
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Data bus

Address bus

CPU
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Vector Memory System

• Next address = Previous address + Stride

• If (stride == 1) && (consecutive elements interleaved across 
banks) && (number of banks >= bank latency), then
⎻ we can sustain 1 element/cycle throughput
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Vector Registers

Memory Banks

Address 
Generator
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Scalar Code Example: Element-Wise Avg.

• For i = 0 to 49
⎻ C[i] = (A[i] + B[i]) / 2

• Scalar code (instruction and its latency)
MOVI R0 = 50 1
MOVA R1 = A 1
MOVA R2 = B 1
MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11   //autoincrement addressing
LD R5 = MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFR R7 = R6 >> 1 1
ST MEM[R3++] = R7 11
DECBNZ R0, X 2   //decrement and branch if NZ

15

304 dynamic instructions
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Scalar Code Execution Time (In Order)

• Scalar execution time on an in-order processor with 1 bank
⎻ First two loads in the loop cannot be pipelined: 2*11 cycles

⎻ 4 + 50*40 = 2004 cycles

• Scalar execution time on an in-order processor with 16 banks (word-
interleaved: consecutive words are stored in consecutive banks)
⎻ First two loads in the loop can be pipelined

⎻ 4 + 50*30 = 1504 cycles

• Why 16 banks?
⎻ 11-cycle memory access latency

⎻ Having 16 (>11) banks ensures there are enough banks to overlap enough 
memory operations to cover memory latency
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Vectorizable Loops

• A loop is vectorizable if each iteration is independent of any other

• For i = 0 to 49
⎻ C[i] = (A[i] + B[i]) / 2

• Vectorized loop (each instruction and its latency):
MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

17

7 dynamic instructions
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Basic Vector Code Performance

• Assume no chaining (no vector data forwarding)
⎻ i.e., output of a vector functional unit cannot be used as the direct input of 

another 

⎻ The entire vector register needs to be ready before any element of it can be 
used as part of another operation

• One memory port (one address generator)

• 16 memory banks (word-interleaved)

• 285 cycles
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE
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Vector Chaining

• Vector chaining: Data forwarding from one vector functional unit 
to another
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Load 
Unit
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Chain

LV   v1

MULV v3,v1,v2

ADDV v5, v3, v4
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Vector Code Performance - Chaining

• Vector chaining: Data forwarding from one vector functional unit to 
another

• 182 cycles
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs 

cannot be 

pipelined. WHY?

VLD and VST 

cannot be 

pipelined. 

WHY?

Strict assumption:

Each memory bank 

has a single port 

(memory bandwidth

bottleneck)

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1
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Vector Code Performance – Multiple Memory Ports

• Chaining and 2 load ports, 1 store port in each bank

• 79 cycles

• 19x perf. improvement!
⎻ was 1504 cycles for scalar
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1 1 11 49

4 49

1 49

11 49

11 491
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MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1



Data Element Num vs. Max Vector Length

• What if # data elements > # elements in a vector register?
⎻ Idea: Break loops so that each iteration operates on # elements in a 

vector register
o E.g., 527 data elements, 64-element VREGs

o 8 iterations where VLEN = 64

o 1 iteration where VLEN = 15 (need to change value of VLEN)

⎻ Called vector stripmining
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Irregular Data Layout?

• What if vector data is not stored in a strided fashion in memory? 
(irregular memory access to a vector)
⎻ Idea: Use indirection to combine/pack elements into vector registers

⎻ Called scatter/gather operations
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Gather/Scatter Operations

24

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result
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Gather/Scatter Operations

• Gather/scatter operations often implemented in hardware to handle sparse 
vectors (matrices)

• Vector loads and stores use an index vector which is added to the base 
register to generate the addresses

• Scatter example

25

Index Vector                 Data Vector (to Store)            Stored Vector (in Memory)

0 3.14 Base+0      3.14

2 6.50 Base+1      X

6 71.20 Base+2      6.50

7 2.71 Base+3      X

Base+4      X

Base+5      X

Base+6    71.20

Base+7      2.71 
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Conditional Operations in a Loop

• What if some operations should not be executed on a vector (based 
on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] != 0) then b[i]=a[i]*b[i]

• Idea: Masked operations 
⎻ VMASK register is a bit mask determining which data element should not be 

acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

⎻ This is predicated execution. Execution is predicated on mask bit.
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Another Example with Masking
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for (i = 0; i < 64; ++i)

if (a[i] >= b[i]) 

c[i] = a[i]

else 

c[i] = b[i]

A B VMASK    

1 2 0                 

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C
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Masked Vector Instructions
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C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute 
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off 
result writeback according to mask

Which one is better?
Tradeoffs?
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Some Issues

• Stride and banking
⎻ As long as they are relatively prime to each other and there are enough 

banks to cover bank access latency, we can sustain 1 element/cycle 
throughput

• Storage of a matrix
⎻ Row major: Consecutive elements in a row are laid out consecutively in 

memory

⎻ Column major: Consecutive elements in a column are laid out 
consecutively in memory

⎻ You need to change the stride when accessing a row versus column
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Matrix Multiplication

• A and B, both in row-major order

• A: Load A0 into vector register V1

⎻ Each time, increment address by one to access the next column

⎻ Accesses have a stride of 1

• B: Load B0 into vector register V2

⎻ Each time, increment address by 10

⎻ Accesses have a stride of 10

30

A4x6 B6x10 → C4x10

Dot products of rows and columns 

of A and B

Different strides can lead to bank conflicts

How do we minimize them?
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Minimizing Bank Conflicts

• More banks

• Better data layout to match the access pattern
⎻ Is this always possible?

• Better mapping of address to bank
⎻ E.g., randomized mapping

⎻ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.
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Vector Instruction Execution
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VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Time

Space

Time
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Vector Unit Structure
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Lane

Functional Units

Partitioned
Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …
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◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
⎻ Example machine has 32 elements per vector register and 8 lanes

⎻ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

34

load

load

mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction issue
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Automatic Code Vectorization

35

for (i=0; i < N; i++)

C[i] = A[i] + B[i]; load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Vectorization is a 

compile-time 

reordering of 

operation 

sequencing

 requires 

extensive loop 

dependence 

analysis
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Vector/SIMD Processing Summary

• Vector/SIMD machines are good at exploiting regular data-level 
parallelism
⎻ Same operation performed on many data elements

⎻ Improve performance, simplify design (no intra-vector dependencies)

• Performance improvement limited by vectorizability of code
⎻ Scalar operations limit vector machine performance

⎻ Remember Amdahl’s Law

⎻ CRAY-1 was the fastest SCALAR machine at its time!

• Many existing ISAs include (vector-like) SIMD operations
⎻ Intel MMX/SSEn/AVX, PowerPC AltiVec

⎻ ARM Advanced SIMD/NEON & SVE, RISC-V Vector Extension
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SIMD ISA Extensions

• Single Instruction Multiple Data (SIMD) extension instructions
⎻ Single instruction acts on multiple pieces of data at once

⎻ Common application: graphics

⎻ Perform short arithmetic operations (also called packed arithmetic)

• For example: add four 8-bit numbers

• Must modify ALU to eliminate carries between 8-bit values
padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+
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Intel Pentium MMX Operations

• Idea: One instruction operates on multiple data elements 
simultaneously
⎻ Designed with multimedia (graphics) operations in mind

38

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.
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Vector Extensions for ARM & RISC-V

• ARM Scalable Vector Extension (SVE)
⎻ https://developer.arm.com/documentation/102476/0100/?lang=en

⎻ https://gitlab.com/arm-hpc/training/bsc_training_materials/-
/blob/master/Slides/7%20-%20Vectorization%20with%20SVE.pptx

• RISC-V Vector Extensions
⎻ https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc

⎻ https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-
spec-1.0.pdf

⎻ https://github.com/riscv-non-isa/rvv-intrinsic-doc
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