
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2024

Graphics Processing Units (GPU)

1

GPUs are SIMD Engines Underneath

• The instruction pipeline operates like a SIMD pipeline (e.g., an
array processor)

• However, the programming is done using threads, NOT SIMD
instructions

• First let’s distinguish between
⎻ Programming Model (Software)

⎻ Execution Model (Hardware)

2CS425 - Vassilis Papaefstathiou

Programming Model vs. Hardware Execution Model

• Programming Model refers to how the programmer expresses the
code
⎻ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, Multi-

threaded (MIMD, SPMD), …

• Execution Model refers to how the hardware executes the code
underneath
⎻ E.g., Out-of-order execution, Vector processor, Array processor, Dataflow

processor, Multiprocessor, Multithreaded processor, …

• Execution Model can be very different from the Programming Model
⎻ E.g., von Neumann model implemented by an OoO processor

⎻ E.g., SPMD model implemented by a SIMD processor (a GPU)

3CS425 - Vassilis Papaefstathiou

How Can You Exploit Parallelism Here?

4

for (i=0; i < N; i++)

C[i] = A[i] + B[i]; load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

CS425 - Vassilis Papaefstathiou

Prog. Model 1: Sequential (SISD)

5

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code Can be executed on a:

• Pipelined processor

• Out-of-order execution processor

o independent instructions executed

when ready

o Different iterations are present in the

instruction window and can execute in

parallel in multiple functional units

o In other words, the loop is

dynamically unrolled by the hardware

• Superscalar processor

o Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

CS425 - Vassilis Papaefstathiou

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

6

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD

instruction to execute the same instruction from all

iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A → V1

VLD B → V2

VADD V1 + V2 → V3

VST V3 → C

CS425 - Vassilis Papaefstathiou

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

7

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine
CS425 - Vassilis Papaefstathiou

Prog. Model 3: Multithreaded

8

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple ThreadCS425 - Vassilis Papaefstathiou

A GPU is a SIMD (SIMT) Machine

• Except it is not programmed using SIMD instructions

• It is programmed using threads (SPMD programming model)
⎻ Each thread executes the same code but operates a different piece of

data

⎻ Each thread has its own context (i.e., can be treated/restarted/executed
independently)

• A set of threads executing the same instruction are dynamically
grouped into a warp (wavefront) by the hardware
⎻ A warp is essentially a SIMD operation formed by hardware!

9CS425 - Vassilis Papaefstathiou

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

10

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machine
A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

CS425 - Vassilis Papaefstathiou

SIMD vs. SIMT Execution Model

• SIMD: A single sequential instruction stream of SIMD instructions →
each instruction specifies multiple data inputs
⎻ [VLD, VLD, VADD, VST], VLEN

• SIMT: Multiple instruction streams of scalar instructions → threads
grouped dynamically into warps
⎻ [LD, LD, ADD, ST], NumThreads

• Two Major SIMT Advantages:
⎻ Can treat each thread separately → i.e., can execute each thread

independently (on any type of scalar pipeline) → MIMD processing

⎻ Can group threads into warps flexibly → i.e., can group threads that are
supposed to truly execute the same instruction → dynamically obtain and
maximize benefits of SIMD processing

11CS425 - Vassilis Papaefstathiou

Fine-Grained Multithreading of Warps

• Assume a warp consists of 32 threads

• If you have 32K iterations, and 1 iteration/thread → 1K warps

• Warps can be interleaved on the same pipeline → Fine grained
multithreading of warps

12

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC XWarp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

CS425 - Vassilis Papaefstathiou

Warps and Warp-Level FGMT

• Warp: A set of threads that execute the same instruction (on
different data elements) → SIMT (Nvidia-terminology)

• All threads run the same code

13

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

CS425 - Vassilis Papaefstathiou

High-Level View of a GPU

14

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

CS425 - Vassilis Papaefstathiou

Latency Hiding via Warp-Level FGMT

• Warp: A set of threads that execute
the same instruction (on different
data elements)

• Fine-grained multithreading
⎻ One instruction per thread in pipeline at a time

(No interlocking)

⎻ Interleave warp execution to hide latencies

• Register values of all threads stay in register file

• FGMT enables long latency tolerance

⎻ Millions of pixels

15

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

CS425 - Vassilis Papaefstathiou

Warp Execution

16

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Time

Space

Time

CS425 - Vassilis Papaefstathiou

SIMD Execution Unit Structure

17

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

CS425 - Vassilis Papaefstathiou

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
⎻ Example machine has 32 threads per warp and 8 lanes

⎻ Completes 24 operations/cycle while issuing 1 warp/cycle

18

W3

W0

W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

CS425 - Vassilis Papaefstathiou

SIMT Memory Access

• Same instruction in different threads uses thread id to index and
access different data elements

19

Let’s assume N=16, 4 threads per warp → 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

CS425 - Vassilis Papaefstathiou

Warps not Exposed to GPU Programmers

• CPU threads and GPU kernels
⎻ Sequential or modestly parallel sections on CPU

⎻ Massively parallel sections on GPU: Blocks of threads

20

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nThr >>>(args);

CS425 - Vassilis Papaefstathiou

Sample GPU SIMT Code (Simplified)

21

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

CS425 - Vassilis Papaefstathiou

Sample GPU Program (Less Simplified)

22CS425 - Vassilis Papaefstathiou

From Blocks to Warps

• GPU cores: SIMD pipelines
⎻ Streaming Multiprocessors (SM)

⎻ Streaming Processors (SP)

• Blocks are divided into warps
⎻ SIMD unit (32 threads)

23

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

NVIDIA Fermi architecture

CS425 - Vassilis Papaefstathiou

Warp-based SIMD vs. Traditional SIMD

• Traditional SIMD contains a single thread

⎻ Sequential instruction execution; lock-step operations in a SIMD instruction

⎻ Programming model is SIMD (no extra threads) → SW needs to know vector length

⎻ ISA contains vector/SIMD instructions

• Warp-based SIMD consists of multiple scalar threads executing in a SIMD
manner (i.e., same instruction executed by all threads)

⎻ Does not have to be lock step

⎻ Each thread can be treated individually (i.e., placed in a different warp) →
programming model not SIMD

o SW does not need to know vector length

o Enables multithreading and flexible dynamic grouping of threads

⎻ ISA is scalar → SIMD operations can be formed dynamically

⎻ Essentially, it is SPMD programming model implemented on SIMD hardware

24CS425 - Vassilis Papaefstathiou

SPMD

• Single procedure/program, multiple data
⎻ This is a programming model rather than computer organization

• Each processing element executes the same procedure, except on different data
elements

⎻ Procedures can synchronize at certain points in program, e.g. barriers

• Essentially, multiple instruction streams execute the same program
⎻ Each program/procedure 1) works on different data, 2) can execute a different control-flow

path, at run-time

⎻ Many scientific applications are programmed this way and run on MIMD hardware
(multiprocessors)

⎻ Modern GPUs programmed in a similar way on a SIMD hardware

25CS425 - Vassilis Papaefstathiou

SIMD vs. SIMT Execution Model

• SIMD: A single sequential instruction stream of SIMD instructions →
each instruction specifies multiple data inputs
⎻ [VLD, VLD, VADD, VST], VLEN

• SIMT: Multiple instruction streams of scalar instructions → threads
grouped dynamically into warps
⎻ [LD, LD, ADD, ST], NumThreads

• Two Major SIMT Advantages:
⎻ Can treat each thread separately → i.e., can execute each thread

independently on any type of scalar pipeline → MIMD processing

⎻ Can group threads into warps flexibly → i.e., can group threads that are
supposed to truly execute the same instruction → dynamically obtain and
maximize benefits of SIMD processing

26CS425 - Vassilis Papaefstathiou

Threads Can Take Different Paths in Warp-based SIMD

• Each thread can have conditional control flow instructions

• Threads can execute different control flow paths

27

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

CS425 - Vassilis Papaefstathiou

Control Flow Problem in GPUs/SIMT

• A GPU uses a SIMD pipeline to
save area on control logic

⎻ Groups scalar threads into warps

• Branch divergence occurs when
threads inside warps branch to
different execution paths

28

Branch

Path A

Path B

Branch

Path A

Path B

This is the same as conditional/predicated/masked execution.

Recall the Vector Mask and Masked Vector Operations?

CS425 - Vassilis Papaefstathiou

Remember: Each Thread Is Independent

• Two Major SIMT Advantages:
⎻ Can treat each thread separately → i.e., can execute each thread

independently on any type of scalar pipeline → MIMD processing

⎻ Can group threads into warps flexibly → i.e., can group threads that are
supposed to truly execute the same instruction → dynamically obtain and
maximize benefits of SIMD processing

• If we have many threads

• We can find individual threads that are at the same PC

• And, group them together into a single warp dynamically

• This reduces “divergence” → improves SIMD utilization
⎻ SIMD utilization: fraction of SIMD lanes executing a useful operation (i.e.,

executing an active thread)

29CS425 - Vassilis Papaefstathiou

Dynamic Warp Formation/Merging

• Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

• Form new warps from warps that are waiting
⎻ Enough threads branching to each path enables the creation of full new

warps

30

Warp X

Warp Y

Warp Z

CS425 - Vassilis Papaefstathiou

Dynamic Warp Formation/Merging

• Idea: Dynamically merge threads executing the same instruction
(after branch divergence)

Fung et al., “Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow,” MICRO 2007.

31

Branch

Path A

Path B

Branch

Path A

CS425 - Vassilis Papaefstathiou

Dynamic Warp Formation Example

32

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

CS425 - Vassilis Papaefstathiou

Hardware Constraints Limit Flexibility of Warp Grouping

33

Can you

move any

thread

flexibly to

any lane?

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

CS425 - Vassilis Papaefstathiou

Large Warps and Two-Level Warp Scheduling

• Two main reasons for GPU resources be underutilized
⎻ Branch divergence

⎻ Long latency operations

34

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp Scheduling,” MICRO 2011.

CS425 - Vassilis Papaefstathiou

Large Warp Microarchitecture Example
• Reduce branch divergence by having large warps

• Dynamically break down a large warp into sub-warps
Decode Stage

1 0 0 1

0 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

0 1 0 0

0 0

0

0
1 1 1 1

0

0

0

0

1 1 1 1

0 0

0

1 1 1 11 1 0 1

Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp Scheduling,” MICRO 2011.
CS425 - Vassilis Papaefstathiou 35

Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles

CS425 - Vassilis Papaefstathiou 36

NVIDIA GeForce GTX 285

• NVIDIA-terminology:
⎻ 240 stream processors

⎻ “SIMT execution”

• Generic classification:
⎻ 30 cores

⎻ 8 SIMD functional units per core

37CS425 - Vassilis Papaefstathiou

NVIDIA GeForce GTX 285 “core”

38

…

= instruction stream decode= SIMD functional unit, control

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

CS425 - Vassilis Papaefstathiou

NVIDIA GeForce GTX 285 “core”

• Groups of 32 threads share instruction stream (each group is a Warp)

• Up to 32 warps are simultaneously interleaved

• Up to 1024 thread contexts can be stored

39

…
64 KB of storage

for thread contexts

(registers)

CS425 - Vassilis Papaefstathiou

NVIDIA GeForce GTX 285

30 cores on the GTX 285: 30,720 threads

40

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

CS425 - Vassilis Papaefstathiou

Evolution of NVIDIA GPUs

41

0

2000

4000

6000

8000

10000

12000

14000

16000

0

1000

2000

3000

4000

5000

6000

GTX	285	
(2009)

GTX	480	
(2010)

GTX	780	
(2013)

GTX	980	
(2014)

P100	
(2016)

V100	
(2017)

G
FL
O
P
S

#S
tr
ea
m
	P
ro
ce
ss
o
rs

Stream	Processors

GFLOPS

CS425 - Vassilis Papaefstathiou

NVIDIA V100

• NVIDIA-terminology:
⎻ 5120 Stream Processors

⎻ “SIMT execution”

• Generic classification:
⎻ 80 Stream Multiprocessors (cores)
⎻ 64 SIMD functional units per core

⎻ Tensor cores for Machine Learning

• NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

42CS425 - Vassilis Papaefstathiou

NVIDIA V100 Block Diagram

80 cores on the V100

43CS425 - Vassilis Papaefstathiou

NVIDIA V100 Core
15.7 TFLOPS Single Precision

7.8 TFLOPS Double Precision

125 TFLOPS for Deep Learning (Tensor cores)

44

https://devblogs.nvidia.com/inside-volta/

CS425 - Vassilis Papaefstathiou

Evolution of NVIDIA GPUs (2021)

45CS425 - Vassilis Papaefstathiou

W. J. Dally, S. W. Keckler and D. B. Kirk, "Evolution of the Graphics Processing Unit (GPU)," in IEEE Micro,
vol. 41, no. 6, pp. 42-51, 1 Nov.-Dec. 2021 [https://ieeexplore.ieee.org/document/9623445]

https://ieeexplore.ieee.org/document/9623445

NVIDIA H100 (2022/2023)

• NVIDIA-terminology:
⎻ 16986 Stream Processors

⎻ “SIMT execution”

• Generic classification:
⎻ 132 Stream Multiprocessors (cores)

o 128 FP32 / 64 FP64 / 64 INT32 FUs per SM

⎻ 528 Gen.4 Tensor cores for ML
o 4 per SM

• 700 Watts

46CS425 - Vassilis Papaefstathiou

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Block Diagram

CS425 - Vassilis Papaefstathiou 47

NVIDIA H100 Core
60 TFLOPS Single Precision (FP32)

30 TFLOPS Double Precision (FP64)

Tensor cores for ML/DL/AI

• 60/500*/1000*/2000* FP64/TF32*/FP16*/INT8* TFLOPS

* Effective is 2x due to Sparsity

48CS425 - Vassilis Papaefstathiou

DGX H100

CS425 - Vassilis Papaefstathiou 49

DGX H100 SuperPOD - Interconnection

CS425 - Vassilis Papaefstathiou 50

DGX H100 SuperPOD

CS425 - Vassilis Papaefstathiou 51

