CS425
Computer Systems Architecture

Fall 2024

Caches: The Basics

CS425 - Vassilis Papaefstathiou

Who Cares about Memory Hierarchy?

Performance

100,000

10,000 A

1000 -

100 -

10

1980 1985 1990

1995 2000 2005

Year

CS425 - Vassilis Papaefstathiou

Processor - Memory
Performance Gap

2010 2015

Relative Bandwidth Improvement

Latency lags Bandwidth

100,000

10,000

1000

10,000
Microprocm
Microprocessor
Memory

100

—

Relative bandwidth improvement

10

1975

1980

¥

1985

1990

1995
Year

2000

2005 2010 2015 2020

-"'(u.at\c,-n(:y,r improvement =

" andwidth improvement)

o

10[} L 2 500 50 90 900 50 50 B0 B0 oo e ey s oo BoEa ..;;.-..

-
-
a"
#
#

1 10

Relative latency improvement

CS425 - Vassilis Papaefstathiou

100

Reasons for Bountiful
Bandwidth but Lagging
Latency
“There is an old network saying:
Bandwidth problems can be cured
with money. Latency problems are
harder because the speed of light is
[fixed—syou can't bribe God.”

—Anonymous

Levels of Memory Hierarchy

CPU

Registers

Register

reference
Laptop Size: 1000 bytes
Speed: 300 ps
Desktop Size: 2000 bytes
Speed: 300 ps

L1 L2 L3
C C C Memory
a a a bus e
® C C Y
h h h
e e e
Level 1 Level 2 Level 3 Memory
Cache Cache Cache reference
reference reference reference
64 KB 256 KB 4-8 MB 4-16 GB
1ns 3-10 ns 10-20 ns 50-100 ns
64 KB 256 KB 8-32 MB 8—64 GB
1ns 3-10 ns 10-20 ns 50-100 ns

CS425 - Vassilis Papaefstathiou

Storage

Flash
memory
reference

256 GB-1TB
50-100 uS

256 GB-2 TB
50-100 uS

Definition of Cache
Definition

» First level of memory hierarchy after registers

» Any form of storage that bufferes temporarily data
» OS buffer cache, name cache, Web cache, ...

» Designed based on the principle of locality

» Temporal locality: Accessed item will be accessed again in
the near future

» Spatial locality: Consecutive memory accesses follow a
sequential pattern, references separated by unit stride

CS425 - Vassilis Papaefstathiou

Caches on RISC

RAM

: Reg. Fetch

Instr. Decode

TEET

=ET

Ca

Execute
Addr. Calc

CIEELCLLELLLLT]

D-cache

Mempry
Ac 5

i Write

Back

WE Data

CS425 - Vassilis Papaefstathiou

IFTTLLLTEE I

Locality

Spatial locality

>

>

Appears due to iterative execution and linear data access patterns

Exploited by using larger block sizes — data to be used prefetched with
block

Exploited by data and code transformations by the compiler
Exploited by unit-stride prefetching mechanisms and policies

Temporal locality

Appears due to iterative execution and data reuse
Exploited by caches, through which data is reused

Working set: data that needs to be kept cached in a window of time to
maximize locality

Reuse distance: number of blocks of memory accessed between two
consecutive accesses to same block

CS425 - Vassilis Papaefstathiou

Memory Hierarchy: Terminology

e Hit: data appears in some block in the upper level
o Hit Rate: the fraction of memory accesses found in the upper level
e Hit Time: Time to access the upper level which consists of
Time to determine hit/miss
e Miss: data needs to be retrieved from a block 1n the lower level
e Miss Rate =1 - (Hit Rate)
e Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block to the upper level
e Hit Time << Miss Penalty (=500 instructions on 21264!)

Lower Level
~ To Processor Upper Level Large Size
Memory Memory
—

Blk X

From Processor . Blk Y

CS425 - Vassilis Papaefstathiou

Cache Measures

e [it rate: fraction found 1n that level
o So high that usually talk about Miss rate = | - Hit rate
o Miss rate fallacy: as MIPS to CPU performance, miss rate to AMAT in
memory

e AMAT = Hit time + Miss rate x Miss penalty (ns or clocks)

e Miss penalty: time to supply a missed block from lower level,
including any CPU-visible delays to save replaced write-back
data to make room in upper level cache. {"All active caches are
full”}

e access time: time to lower level = f'(latency to lower level)
e ftransfer time: time to transfer block =/ (BW between upper & lower levels)

e replacement time: time to make upper-level room for new block, if all
active caches are full

CS425 - Vassilis Papaefstathiou

Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time 4+ Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (CPIHE,;U,M” +) x Clock cycle time

, : Memory accesses *
P — | Pl , M M I
CPU time = IC x (C execution + Miss rate x m<troction x Miss pena ty)

x Clock cycle time

Assuming that cache hits do not stall the machine!

CS425 - Vassilis Papaefstathiou

An example

e Assumption on computer A
o CPI= 1.0 when all memory accesses hit
o Data accesses are only loads and stores (explain 50% of insts.)
e Miss penalty: 25 cc
o Miss rate: 2%

e Compute the speedup of computer B, for which all cache accesses
are hit

exectime, = (CPUcc + MemStallcc) x Clock cycle time
=(ICxCPI+0)xcct=ICx1.0x: Clock cycle time

MemStallce,= IC x MemAccess x MissRate x MissPenalty

Instruction

=ICx(1+0.5)x0.02x25=1ICx0.75
exectime , = (CPUcc + MemStallcc)x Clock cycle time
=(ICxCPI+1ICx0.75)x Clock cycle time

= 1C x 1.75 x Clock cycle time
CS425 - Vassilis Papaefstathiou

4 Questions for Memory Hierarchy

For a given level of the memory hierarchy

» Q1: Where can a block be placed in the upper level?
(Block placement)

» Q2: How is a block found if it is in the upper level? (Block
identification)

» Q3: Which block should be replaced on a miss? (Block
replacement)

» Q4: What happens on a write? (Write strategy)

CS425 - Vassilis Papaefstathiou

Q1: Where to Place Blocks?

e Jargon: Each address of a memory location is
partitioned into:

e block address
tag

index

e block offset

Block address

Tag

Index

CS425 - Vassilis Papaefstathiou

Block
offset

Simplest Cache: Direct Mapped

Use Index In Address to find Cache Location
Memory Address Memory

0 ~

4 Byte Direct Mapped Cache
Cache Index
0
1
2
3
* Location 0 can be occupied by
data from:
— Memory location 0, 4, 8, ... etc.

— In general: any memory location
A whose 2 LSBs of the address are Os

/ — Address<1:0> => cache index

 Which one should we place in
the cache?

* How can we tell which one is in

the cache?
CS425 - Vassilis Papaefstathiou

e N B IR - N7 T NV S R

1 KB Direct Mapped Cache, 32B blocks

 Fora 2™ N byte cache:

— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size =2 ** M)

31 9 4
Cache Tag Example: 0x50 Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit Cache Tag Cache Data
Byte 31| ** |Bytel |Bytd0 |0
0x50 Byte 63| °°* | Byte 33 Byt?.’:‘l |-
2
3
Byte 1023 . Byte 992 | 31

CS425 - Vassilis Papaefstathiou

Direct Mapped Cache

Advantages

» Simple, low complexity, low power consumption

» Fast hit time

» Data available before cache determines hit or miss
» Hit/miss check done in parallel with data retrieval

Disadvantages

» Conflicts between blocks mapped to same block in cache

CS425 - Vassilis Papaefstathiou

Two-way Set Associative Cache

* N-way set associative: N entries for each Cache Index
— N direct mapped caches operates in parallel (N typically 2 to 4)

« Example: Two-way set associative cache
— Cache Index selects a “set” from the cache

— The two tags in the set are compared in parallel

— Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block 0 Cache Block 0

Mux 0 Sel0 /_C
_\lv'/ ¥ Cache Block
Hit

CS425 - Vassilis Papaefstathiou

-
=

Two-way Set Associative Cache

Advantages

» Choice of mapping memory block to different cache blocks
in a set

» LRU or other policies for good selection of victim blocks
» Reduction of conflicts

Disadvantages
» Increased complexity — comparators, multiplexor, parallel
tag comparison
» Increased power consumption
» Increased hit time, due to comparators and multiplexor
» Data available after cache determines hit or miss

CS425 - Vassilis Papaefstathiou

Cache Mapping Example

Block

no.

Cache

Block

no.

Memory

Fully associative:
block 12 can go
anywhere

01234567 Block

Block frame address

1111111111
01234567890123456789

Direct mapped: Set associative: .
block 12 can go block 12 can go Mapplng block 12 from memory
only into block 4 anywhere in set 0 . .

(12 MOD 8) (12 MOD 4) Inside 8-block caches

01234567 Block 01234567

no.

no.

Set Set Set Set

0 1 2 3
222222222233
012345678901

Number of sets = #Blocks / Associativity
Set/Index = (Block Address) MOD (Number of sets in cache)

CS425 - Vassilis Papaefstathiou

19

Q2: How iIs a block found in the cache

Cache tag array

Block Address Block

» Index points to line in data array — one block or set
» Offset points to byte in block

» Tag compared against tag field in address

» Valid bit ORed with output of tag comparator

CS425 - Vassilis Papaefstathiou

Q3: Which block Is replaced on a miss

e Easy if direct-mapped (only 1 block “1 way” per set index)

e Three common choices for set-associative cache:
e Replace an eligible random block

o Replace the least recently used (LRU) block

can be hard to keep track of, so often only approximated

» Replace the oldest eligible block (First In, First Out, or FIFO)

e SPEC2000 benchmark MPKI: Misses Per 1K (1000) Instructions

Associativity

Two-way Four-way Eight-way
Size LRU Random FIFO LRU Random FIFO LRU Random FIFO
16 KiB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4
64 KiB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3
256 KiB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

CS425 - Vassilis Papaefstathiou

Q4: What happens on a write?

Write-Through Write-Back
Data word written to Write new data word
cache block only to 1 cache block
Polic is also written to next Update lower level just
y |0WE""?“E| memory before a written block
Example, instr. sw to L1$ leaves cache, so not
also goes to L2% lose true value
Debugging Easier Harder
Can read misses force N Yes (used to slow some
writes? 0 reads; now write-buffer)
Do repeated writes .
touch lower level? Yes, memory busier No

Two options on a write miss:
*Fetch line from lower-level and perform write hit (“write allocate”)

Perform write only to the lower-level cache (“no-write allocate”)
CS425 - Vassilis Papaefstathiou

Write Buffers for Write-Through Caches

—| Cache |+=——| Lower
Processor L — Level

Memory

Write Buffer

e

Holds (addresses&) data awaiting write-
through to lower level memory

Q. Why a write buffer ? A. So CPU doesn’t stall
Q. Why a buffer, why not A. Bursts of writes are
just one register ? common.

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards an issue for next read, or send read 1%t after

write buffer? check write buffers.
Q. Can Write Buffer work A. Yes. Send a block in the write-
with Write-Back Cache? buffer on each write-back.

CS425 - Vassilis Papaefstathiou

Recap: Average Memory Access Time (AMAT)

AMAT components

Average memory access time = Hit time 4+ Miss rate x Miss penalty
CPU time = (CPU execution clock cycles + Memory stall clock cycles)
x Clock cycle time

Memory stall clock cycles
Instruction

CPU time = IC x (GPIHEMMH +) x Clock cycle time

1 : Memory accesses 4
CPU time = IC x | CPI -n + Miss rate x : x Miss penal
(exsoution Instruction P W)
x Clock cycle time
Assuming that cache hits do not stall the machine!

CS425 - Vassilis Papaefstathiou

Example
UltraSPARC il

» in-order processor

> CPlexecution = 1.0

» miss penalty = 100 cycles

» miss rate = 2%

» 1.5 memory references per instruction
» 30 cache misses per 1000 instructions

1.
CPU time = IC x (1.0 + 0.02 x TS X 100) x Clock cycle time = IC x 4 x cycle time

30
1000

CPU time = IC x (1.0 - x1ﬂ|}) x Clock cycle time = IC x 4 x cycle time

CS425 - Vassilis Papaefstathiou

Example

UltraSPARC lli

» Cache miss latency increases execution time by 4x

» Higher clock rates imply more clock cycles wasted due to
miss penalty
» Higher relative impact of cache on performance

» HW/SW cache-conscious optimizations attempt reduce
AMAT

» Performance depends on both clock cycle and AMAT —
trade-off

CS425 - Vassilis Papaefstathiou

Example

Direct-mapped vs. set-associative cache

» 1 GHz processor
> CPlexecution = 2.0

» 64 KB caches with 64-byte blocks
» 1.5 memory references per instruction
» Direct mapped cache miss rate = 1.4%

» Set associative cache stretches clock cycle by 1.25,
miss rate = 1.0%

» 75 ns miss penalty (i.e. 75 cc or 60 cc)

» 1 cycle hit time
AMAT Girect—mapped = 1.0 + (.014 x 75) = 2.05ns
AMAT_yay = 1.0 x 1.25 4 (.01 x 75) = 2.00ns

CS425 - Vassilis Papaefstathiou

Example

Direct-mapped vs. set-associative cache

Misses
Instruction
CPU timegirect—mapped = IC x (2.0 x 1.0+ 0.014 x 1.5 x 75) =3.58 x IC

CPU timemo—way = IC x (2.0 x 1.254+0.01 x 1.5 x 75) =3.63 x IC

CPU time = IC x (CPI&,,,EDU,,-&” - X Miss penalty) x clock cycle time

» Associative cache achieves lower AMAT than direct-mapped
cache

» Direct-mapped cache achieves higher performance than
associative cache

Why? In this example common case (hits) are faster for Direct-mapped cache.

CS425 - Vassilis Papaefstathiou

Overlapping memory latency in OOO processors

Miss penalty in OO0
» Processor can execute instructions while cache miss is
pending
» Processors can execute instructions also while cache hit is
pending

» Hard to attribute stall cycles to instructions
» Stall cycle is any cycle where at least one instruction does

not commit
Memory stall cycles Misses , :
: 4 : y = . — x (Total miss latency — overlapped miss latency)
instruction instruction

CS425 - Vassilis Papaefstathiou

