CS425
Computer Systems Architecture

Fall 2024

Caches: Improving Performance

CS425 - Vassilis Papaefstathiou

Classification of Cache Optimizations

m Goal: Reduce the Average Memory Access Time
= AMAT = Hit Time + Miss Rate * Miss Penalty

m Approaches
= Reduce Miss Rate
= Reduce or Hide Miss Penalty
= Reduce Hit Time

m Caveats

= These may be conflicting goals

= Keep track of clock cycle time, area, and power
consumption

CS425 - Vassilis Papaefstathiou

Common Advanced Cache Optimizations

Multi-level caches and inclusion
Victim caches
Pseudo-associative caches
Skew-associative caches

Critical word first

Non-blocking caches
Prefetching

Multi-ported caches

CS425 - Vassilis Papaefstathiou

Classification of Cache Optimizations

* Reduce (or Hide) Miss Penalty
 Reduce Miss Rate
 Reduce Hit Time

CS425 - Vassilis Papaefstathiou

Multi-core Processors

m Multi-level caches
m Private L1 instruction and data caches and (optionally) L2 caches
= Shared last level cache (L3 cache in this diagram)

= Connected through wide links
CS425 - Vassilis Papaefstathiou

1. Multi-level Caches

Motivation

= Optimize each cache for different constraints

m Exploit cost/capacity trade-offs at different levels
Private L1 caches

= Optimized for fast access time by one core

= 8KB-64KB, direct-mapped to 4-way associative, 1-3 CPU cycles

Private L2 caches
» Extend the capacity of L1, shield from latency of shared LLC cache
= 256KB-512KB, 4 to 8-way associate

L3 caches
= Shared for best utilization (how?)
= Optimized for low miss-rate: Multi-MB, highly associative (why?)

CS425 - Vassilis Papaefstathiou

Multi-level Caches

Motivation

» Bigger caches bridge gap between CPU and DRAM

» Smaller caches keep pace with CPU speed

» Mutli-level caches a compromise between the two

» L2 cache captures misses from L1 cache
» L2 cache provides additional on-chip caching space

Performance analysis

AMAT = Hit time;4 + Miss rate;; x Miss penalty;
miss penalty, ; = Hit time;» 4 Miss rate;, x Miss penalty,,
AMAT = Hit time 1 + Miss rate;1 x (Hit time;» + Miss rate;» x Miss penalty,,)

CS425 - Vassilis Papaefstathiou

Multi-level cache miss rates
Local vs. global miss rate

» Local miss rate: Number of misses in the cache divided by
the number of access to this cache

» Global miss rate: Number of misses in the cache divide by
the number of accesses issued from the CPU

Performance analysis

Average memory stalls per instruction = Miss per instruction;; x Hit time;»
+Misses per instruction,, x Miss penalty,,

CS425 - Vassilis Papaefstathiou

AMAT 1n multi-level caches

Example

» Write-back first-level cache

40 L1misses per 1000 memory references
20 L2 misses per 1000 memory references
L2 cache miss penalty = 100 cycles

L1 hit time = 1 cycle

L2 cache hit time = 10 cycles

Yy vy ¥y vy v Y

1.5 memory references per instructions
40
Mi = —— =10.04
1SS rate; 1 1000 0.0
missesin L2 20
missesin L1 40

AMAT = Hit time;1 + Miss rate 4 x (Hit time;o + Miss rate; 2 x Miss penalty,-)

AMAT =1.0+ 0.04 x (10 + 0.50 x 100) = 3.4cycles
CS425 - Vassilis Papaefstathiou

= 0.50

Miss rate L2 local =

Stalls 1n multi-level caches

Example

Write-back first-level cache

40 L1 misses per 1000 memory references
20 L2 misses per 1000 memory references

>
>
>
» L2 cache miss penalty = 100 cycles
» L1 hittime =1 cycle

» L2 cache hit time = 10 cycles

>

1.5 memory references per instructions

Average memory stalls per instruction = Misses per instruction;; x Hit time;» +
Misses per instruction;, x Miss penalty,,

20

40
* 1.5 =10+
1000

1000

x 1.5 x 100 = 3.6 clock cycles

CS425 - Vassilis Papaefstathiou

L2 cache performance implications

Second-level cache size (KB)

1.06
1.02

1.14
1.10

Tt 3

2048

1024

- E—

e
000 o0s 100 1s0 200 250

Relative execution time

3.00

E L2 hit = 16 clock cycles
H1L2 hit = 8 clock cycles

Normalized to 8K KB, 1 clock cycle hit L2 cache

CS425 - Vassilis Papaefstathiou

Inclusion Property

L1 cache contents always in L2 cache?

» Mutil-level inclusion guarantees that L1 data is always present in L2, L2
g g B FRAR

» Simplifies cache consistency check in multiprocessors, or
between |/O devices and processor

» Complicates the use of different block sizes for L1 and L2 —
L1 refill may require storing more than one blocks
Second-level cache miss must invalidate all first-level blocks

» Mutil-level exclusion guarantees that L1 data is never present in L2, L2
data never present inin L3, ...

» Reasonable choice for systems with small L2 cache relative
to the L1 cache

» Effective expansion of total caching space with a slower
cache AMD Athlon supports exclusive caches

Pentium 4 has no constraints (non-inclusive/non-exclusive)
CS425 - Vassilis Papaefstathiou

2. Critical word first and early restart

Critical word first

» (Cache block size tends to increase to exploit spatial locality

» Any given reference needs only one word from a multi-word
block

» CWEF fetches requested word first and sends it to processor
» Processor continues execution while rest of the block is fetched

Early restart

» Fetches words in the order stored in the block

» As soon as critical word arrives, sends to processor and
processor restarts

CS425 - Vassilis Papaefstathiou

3. Glving priority to read misses over writes

Write-through caches

» Write buffer holds written data to mask memory latency
» Write buffer may hold values needed by a later read miss

SW R3, 512(RO) ;M[512] = R3 (cache index 0)
LW R1, 1024 (RO) ;R1 = M[1024] (cache index 0) _ _ o
LW R2, 512 (RO) ;R2 = M[512] (cache index 0) Miss in cache/hitin WB

» Store to 512[R0] with block from cache index 0 waits in write buffer

» Load to 1024[R0] misses and brings new block in cache index 0

» Second load attempts to bring block from 512[R0] (held in write buffer)
» Memory RAW hazard

CS425 - Vassilis Papaefstathiou

Giving priority to read misses over writes

Write-through caches

» Check contents of write buffer on read miss
» If no conflict then let missing read bypass pending write

all desktop and server processors give reads priority over writes.
Write-back caches

» Slow path: write dirty block to memory, then fetch new block from
memory to cache

» Faster path:write dirty block to write buffer, then fetch new block from
memory to cache, then write back dirty block (a.k.a. write-back buffer)

CS425 - Vassilis Papaefstathiou

4. \Write Buffer & Victim Cache

CPU

address
Data Data
1 *1 Im out

| Tag

? . Data

1

Write
Diuffer

| Lower leval memaony .

CS425 - Vassilis Papaefstathiou

Merging Write Buffer

Write buffer organization

» Processor blocks on write if write buffer full
» Processor checks write address with address in write buffer

» Processor merges writes to same address if address is present in write
buffer

» Assume write buffer with 4 entries, with 4 64-bit words each
» Writes to same cache block in different cycles, no write merging

Write buffer, no write merging

Write address V V V \
100 1[Mem[100] [0 0 0
108 1[Mem[108] [0 0 0
116 1|Mem[116] | 0 0 0
124 1|Mem[124]]0 0 0

CS425 - Vassilis Papaefstathiou

Merging Write Buffer

Write buffer organization

» Processor blocks on write if write buffer full
» Processor checks write address with address in write buffer

» Processor merges writes to same address if address Is present in write
buffer

» Assume write buffer with 4 entries, with 4 64-bit words each
» Writes to same cache block in different cycles, write merging

Write buffer,write merging

Write address V V V V
100 1[{Mem([100] [1|Mem[108] | 1 |Mem[116] | 1 |Mem[124] |

0 0 0 0

0 0 0 0

0 0 0 0

CS425 - Vassilis Papaefstathiou

Victim Cache

Tiny cache holds evicted cache blocks

» Small (e.g. 4-entry) fully associative buffer for evicted blocks

» Proposed to reduce impact of conflicts on direct-mapped caches

» Victim cache + Direct-mapped cache ~ associative cache

CFU
address

‘Wictim cache

= Tag -\ Data !! ¥

Datain Data out

nexi-level

l_
1'_I

CS425 - Vassilis Papaefstathiou

a four-entry victim
cache might remove
one quarter of the
misses in a 4-KB
direct-mapped data
cache.

5. Non-blocking or Lookup Free Caches

m Basicidea
= Allow for hits while serving a miss (hit-under-miss)
= Allow for more than one outstanding miss (miss-under-miss)

m When does it make sense (for L1, L2, ...)
m When the processor can handle >1 pending load/store
= This is the case with superscalar processors
= When the cache serves >1 processor or other cache

= When the lower level allows for multiple pending accesses
= More on this later

m What is difficult about non-blocking caches
= Handling multiple misses at the same time

= Handling loads to pending misses

= Handling stores to pending misses

Out-of-order pipelines already have this functionality built in... (load queues, etc).
CS425 - Vassilis Papaefstathiou

Potential of Non-blocking Caches

1 [CEU] Stall CPU on miss
FEgnﬂltv]
Miss
Miss Hit
dm [CED] Hit under miss
[iiiss Penafty]
Stall only when
result needed 27
Miss Hit Missl
l 4 }
e 2y — _ S
[Miss Penalty | Multiple out-standing misses
[Miss Penalty |
[iss Penalty |

CS425 - Vassilis Papaefstathiou

Miss Status Handling Registers

m Keeps track of

= Outstanding cache misses

= Pending load & stores that refer to that cache block

. 1 27 1 1 3 5 5
- FI € IdS Of an M S H R Valid| Block Address Issue+ Valid| Type | Block Offset | Destination
m Valid bit Valid| Type | Block Offset | Destination
Valid| Type | Block Offset | Destination
- CaChe bIGCk add ress Valid| Type | Block Offset | Destination

= Must support associative search

= Issued bit (1 if already request issued to memory)

= For each pending load or store
= Valid bit

= Type (load/store) and format (byte/halfword/...)

= Block offset

= Destination register for load OR store buffer entry for stores

CS425 - Vassilis Papaefstathiou

Load/store 0
Load/store 1

Load/store 2

Load/store 3

Non-blocking Caches: Operation

® On a cache miss:

= Search MSHRs for pending access to same cache block
= If yes, just allocate new load/store entry

= (if no) Allocate free MSHR
= Update block address and first load/store entry

= If no MSHR or load/store entry free, stall
m When one word/sub-block for cache line become available

= Check which load/stores are waiting for it
= Forward data to LSU
= Mark loads/store as invalid

m Write word in the cache

m When last word for cache line is available

= Mark MSHR as invalid
CS425 - Vassilis Papaefstathiou

6. Multi-ported Caches

m |dea: allow for multiple accesses in parallel

m Processor with many LSUs, |+D access in L2, ...

m Can be implemented in multiple ways

= True multi-porting

s Multiple banks

m What is difficult about multi-porting

= Interaction between parallel accesses (especially for

stores
) CS425 - Vassilis Papaefstathiou

True Multi-porting

B True multiporting
m Use 2-ported tag/data storage

m Problem: large area increase

= Problem: hit time increase

Request 1 Data 1
> >
Request 2 R Cache Data}2

CS425 - Vassilis Papaefstathiou

Multi-banked Caches

Cache

Bank 1 Read Data 1

Request 1

Cache
Request 2 Bank 2 Read Data 2

m Partition address space into multiple banks

m BankO caches addresses from partition 0, bankl from partition 1...
m (Can use least or most significant address bits for partitioning (block address)

= What are the advantages of each approach?

m Benefits: accesses can go in parallel if no conflicts

m Challenges: conflicts, distribution network, bank

utilization
CS425 - Vassilis Papaefstathiou

Sun UItraSPARC T2 8 bank L2 cache

e

L2 Data
Bank 0
L2B0O
L2 Data
Bank 1
L2B1 '
1 L2 L2 L2
TAGO TAG1 | TAGS

Ei%l

L2

TAG7 TAGGI e

RDP TDS

CS425 - Vassilis Papaefstathiou

‘ L2 Data

27

Classification of Cache Optimizations

* Reduce Miss Penalty
« Reduce Miss Rate
 Reduce Hit Time

CS425 - Vassilis Papaefstathiou

3 C’s model

Characterization of cache misses

» Compulsory miss: Miss that happens due to the first access to a block
since program began execution. Also called cold-start miss.

» (Capacily miss: Miss that happens because a block that has been
fetched in the cache needed to be replaced due to limited capacity (all
blocks valid in the cache, cache needed to select victim block). Block
had been fetched, replaced, and re-fetched to count as capacity miss.

» Conflict miss: Mlss that happens because address of block maps to
same location in the cache with other block(s) in memory. Block had
been fetched, replaced, re-tetched, and cache has invalid locations that
could hold the block if a different address mapping scheme were used,
to count as conflict miss (as opposed to compulsory miss with first-time
fetch).

CS425 - Vassilis Papaefstathiou

Associativity and conflict misses

« Compulsory misses are
those that occur In an
Infinite cache

« Capacity misses are
those that occur in a
fully associative cache

« Conflict misses are
those that occur going
from fully associative to
8-way associative, 4-
way associative, and so
on

Miss rate

0.09 f \m-mmmmmrmmmmmmmm s

0,08 N\-----ommmmmme

0.06 AN - ----------mmmmee e e

0.05
0.04
0.03
0.02
0.01
0.00

CS425 - Vassilis Papaefstathiou

16

0.07 AN Nommrrrmmmmemmm e

32 64 128
Cache size (KB)

O1-way
O2-way
H4-way
O8-way
Hl capacity

O compulsory

256

512

1024

2 to 1 cacherule

0.09 { \{"-------mmmmmmmmmmmromo oo

0.04 1N —,, ez - - - - - - - ----------- - - -

0084 Nrrrrmrmrmm e i e ea e O1-way -
O2-way
007 W\ N """t m s m4-way -
0.06 AN, "~ "~"""tmtmmTmmmmsmmmmm-mm--es O8-way -
2 W capacit
g 0.05 WA= 7= 1=~ I{:D;pulzury)
=

EER 2 AR
R L e N

0.01 | - - - - - -

0.00
4 8 16 32 64 128 256 512 1024

Cache size (KB)

miss rate 1-way associative cache of size X = miss rate 2-way associative cache of size X/2
CS425 - Vassilis Papaefstathiou

Miss rate distribution

100%

80%

60% O1-way

O2-way

H4-way
O8-way

M capacity

O compulsory

40%

Miss rate per type

20%

0%
4 8 16 32 64 128 256 12 1024
Cache size (KB)
« Associativity tends to increase in modern caches (for example 8-way L1 and 16-way L3)

» Increased associativity may result in complex design and slow clock
CS425 - Vassilis Papaefstathiou

/. Increasing the block size

Spatial locality

>

>

Larger block size usually reduces
compulsory misses

Larger block size increases miss 2596 oo
penalty, since processor needs to L
fetch more data

Miss 15% = .
Increasing block size may increase Rate . ool
conflict misses, if spatial locality is —
poor (most words in fetched block 596 Lo
not used) nuL ?;:
Increasing block size may increase
capacity misses, if spatial locality is

poor (most words in fetched block
not used)

CS425 - Vassilis Papaefstathiou

Block size impact

Block Size (bytes)

—=— 1K

—=— 4K
—=— 16K
—— 64K
—=— 256K

Miss rate versus block size

SPEC92 benchmarks
Cache size

Block size 4K 16K 64K 256K

16 8.57% 3.94% 2.04% 1.09%

32 7.24% 2.87% 1.35% 0.70%

64 7.00% 2.64% 1.06% 0.51%

128 7.78% 2.77% 1.02% 0.49%

256 9.51% 3.29% 1.15% 0.49%

CS425 - Vassilis Papaefstathiou

AMAT versus block size

SPEC92 benchmarks

» Example assumes 80-cycle memory latency, 16 bytes per
2 cycles pipelined memory throughput

Cache size

Block size Miss penalty 4K 16K 64K 256K

16 82 8.027 4231 2.673 1.894
32 84 7.082 3411 2.134 1.588
64 88 7.160 3.323 1.933 1.449
128 96 8.469 3.659 1.9/79 1.470
256 112 11.651 4.685 2.288 1.549

Hit time = 1, Miss rate from previous slide

AMAT = Hit Time + Miss Penalty x Miss Rate
CS425 - Vassilis Papaefstathiou

8. Larger Caches

Implications of higher cache capacity

» Reduction of capacity misses

» Longer hit time

» Increased area, power, and cost
» Very large multi-MB caches often placed off-chip

AMAT = Hit Time + Miss Rate * Miss Penalty

CS425 - Vassilis Papaefstathiou

9. Increasing Associativity

Example

» Higher associativity increases hit time
» Increased hit time for L1 cache means increased cycle time

» Assume
Hit time = 1.0 cycle

Miss penalty giract— mappead = 25 CYcles to perfect L2 cache
Clock cycle time,_,,, = 1.36 x Clock cycle time;_,,,
Clock cycle times_y,, = 1.44 x Clock cycle timeq_ ,,
Clock cycle timeﬂ_WHF = 1.52 x Clock cycle time1_wa},

AMATg _ way < AMAT4_ yay?
AMAT 4 _ way < AMAT_ yyzy?
AMAT, _ yay < AMAT] _ yay?

CS425 - Vassilis Papaefstathiou

Increasing Associativity

Example

» Assume
Hit time = 1.0 cycle
Miss penalty yirect— mapped = 29 Cycles to perfect L2 cache
Clock cycle time,_,,,, = 1.36 x Clock cycle time;_,,
Clock cycle times_,,, = 1.44 x Clock cycle timeq_,,
Clock cycle timeg_,,,, = 1.52 x Clock cycle time;_,,
AMATg_ yay = 1.52 + Miss rateg_ yz, x 25.0
AMAT,_ way = 1.44 4 Miss ratey_y,y x 25.0
AMAT,_ yzy = 1.36 + Miss ratep_ 5, x 25.0
AMAT{ _ way = 1.00 + Miss rateq_ sy, x 25.0

CS425 - Vassilis Papaefstathiou

AMAT versus Associativity
SPEC92 benchmarks

Associativity

Cache size (KB) One-way Two-way Four-way Eight-way

4 3.44 3.25 3.22 3.28

8 2.69 2.58 2.55 2.62
16 2.23 2.40 2.46 2.53
32 2.06 2.30 2.37 2.45
64 1.92 2.14 2.18 2.25
128 1.32 1.66 1.75 1.82
256 1.20 1.55 1.59 1.66

Miss rates from Computer Architecture book

Makes more sense to have high associativity in L2, L3 caches where local miss rate is high

CS425 - Vassilis Papaefstathiou

10. Prefetching

m |dea: fetch data into the cache before processors
request them
= Can address cold misses
= Can be done by the programmer, compiler, or hardware

m Characteristics of ideal prefetching

= You only prefetch data that are truly needed
= Avoid bandwidth waste

= You issue prefetch requests early enough
« To hide the memory latency

= You don’t issue prefetch requests too early

= To avoid cache pollution
CS425 - Vassilis Papaefstathiou

Software Prefetching

for (i=0; i<N; i++) { ™ lIssuessoftware prefetching

__prefetch(a[i+8]); m Takes up issue slots
__prefetch(b[i+8]) ; = Not big issue with superscalar
sum += a[i]*b[i]; = Takes up system bandwidth

= Must have non-blocking caches

m Prefetch distance depends on
specific system implementation

= Non-portable code

Doesn’t have to be correct!
prefetch(-1) ;

= Not easy to use for pointer based
structures

= Requires ninja
programmer/compiler!

CS425 - Vassilis Papaefstathiou

Hardware Prefetching

m Same goal with software prefetching but initiated by hardware
= Can tune to specific system implementation
m Does not waste instruction issue bandwidth
= More portable code

m Major design questions
= Where to place a prefetch engine?
=« L1,L2,..
= What to prefetch?
= Next sequential cache line(s), strided patterns, pointers, ...
= When to prefetch?
= On aload, on a miss, when other prefetched data used, ...
= Where to place prefetched data
= Inthe cache or in a special prefetch buffer
= How to handle VM exceptions?

= Don’t prefetch beyond a page?
CS425 - Vassilis Papaefstathiou

Simple Sequential Prefetching

m On a cache miss, fetch two sequential memory
blocks

= Exploits spatial locality in both instructions & data

= Exploits high bandwidth for sequential accesses

m Called “Adjacent Cache Line Prefetch” or “Spatial
Prefetch” by Intel

m Extend to fetching N sequential memory blocks

= Pick N large enough to hide the memory latency
CS425 - Vassilis Papaefstathiou

Stream Prefetching

m Sequential prefetching problem
= Performance slows down once every N cache lines

m Stream prefetching is a continuous version of prefetching
= Stream buffer can fit N cache lines

= On a miss, start fetching N sequential cache lines
= On a stream buffer hit:
= Move cache line to cache, start fetching line (N+1)

®m In other words, stream buffer tries to stay N cache lines ahead

m Design issues
m When is a stream buffer allocated
s When is a stream buffer released

= Can use multiple stream buffers to capture multiple streams

= E.g.a program operating on 2 arrays
CS425 - Vassilis Papaefstathiou

Stream Buffer Design

b B | B | Ew |

tag cache block tag cache block tag cache block

A+1 data B+1 data A+3 data =— Head Entry
L1 Cache - A2 dat B+2 data A+d daia
—— + ata + a a
Stream Buffers
A+3 data B+3 data A+5 data
A+d data B+4 data A+6 data ~+— Tail Entry
' ' & '
| | Y ¥ 1
L2 Cache

» Each buffer fetches data from one contiguous stream
» Cache and head entries of stream buffers checked upon
access

» Cache miss may be served by head of stream buffer
CS425 - Vassilis Papaefstathiou

Stream Buffer Design

b e | B | Ew

tag cache block tag cache block tag cache block

A+ data B+1 data A+3 data =— Head Entry
L1 Cache - A2 dat B+2 data A+d data
- A ata + a a
Stream Buffers
A+3 data B+3 data A+5 data
A+d data B+4 data A+6 data ~+— Tail Entry
I 'y f 1 ' 1
9 1 L]
L2 Cache

» |f cache miss hits on stream buffer, head pointer moves
down and prefetching is triggered

» Available bit per entry indicates if prefetching is in flight

» Buffer allocated when a stream of misses (e.g. address A,
A+1,...) is detected

CS425 - Vassilis Papaefstathiou

Strided Prefething

PC | Stride | Last Addr | Conf

m |dea: detect and prefetch strided accesses

[PC]
m for (i=0; i<N; i++) A[i*1024]++;

P 0x08ab0 | 8 | Oxif024 | 10

m Stride detected using a PC-based table 0x037a8 | 1024 | Oxf0ab2 | T

m For each PC, remember the stride

m Stride detection

= Remember the last address used for this PC

= Compare to currently used address for this PC
m Track confidence using a two bit saturating counter
= Increment when stride correct, decrement when incorrect

m How to use the PC-based table

m Similar to stream prefetching except using stride instead of +1
CS425 - Vassilis Papaefstathiou

Sandybridge Prefetching (Intel Core 17-2600K)

® “Intel 64 and IA-32 Architectures Optimization
Reference Manual, Jan 2011”, pg 2-24

Two hardware prefetchers load data to the L1 DCache:

* Data cache unit (DCU) prefetcher. This prefetcher, also known as the
streaming prefetcher, is triggered by an ascending access to very recently loaded
data. The processor assumes that this access is part of a streaming algorithm
and automatically fetches the next line.

* Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps
track of individual load instructions. If a load instruction is detected to have 3
regular stride, then a prefetch is sent to the next address which is the sum of the
current address and the stride. This prefetcher can prefetch forward or backward
and can detect strides of up to 2K bytes.

http://www.intel.com/Assets/PDF/manual/248966.pdf

CS425 - Vassilis Papaefstathiou

Other Ideas in Prefetching

m Prefetch for pointer-based data structures

m Predict if fetched data contain a pointer & follow it
s Works for linked-lists, graphs, etc

m Must be very careful:

= What is a pointer?
= How far to prefetch?

m Different correlation techniques

s Markov prefetchers

m Delta correlation prefetchers
CS425 - Vassilis Papaefstathiou

11. Compiler Optimizations

Cache-aware optimizations in software

» Code transformations to improve:
» Spatial locality, through higher utilization of fetched cache

blocks
» Temporal locality, through reduction of the reuse distance of

cache blocks
» Examples: loop interchange, loop blocking, loop fusion,

loop fision
» Data layout and data structure transformations to improve:
» Spatial locality, through higher utilization of fetched cache

blocks
» Examples: array merging, structure/object class member

reordering in memory, block array layouts

CS425 - Vassilis Papaefstathiou

Array merging

Data structure reorganization for spatial locality

S+ Bafore =/
int val[SIZE];
int key[SIZE];

> Assume code accessing val[i], key[i], for every |
> Accesses to val and key may conflict in direct-mapped caches

» Solution, merge arrays, accesses to val[i], key[i] do not conflict in the cache,
spatial locality exploited

JSw After =/
struct merge |
int wal;
int key;
}
struct merge merged_array[SIZE];

CS425 - Vassilis Papaefstathiou

Loop Interchange

/* Before */
for (§ = 0; § < 100; § = j+1)
for (1 = 0; 1 < 5000; 1 = 1+1)
®x[1]1[3] = 2 * x[1][]];

/* After */
for (1 = 0; 1 « 5000; i = i+1)
for (j = 0; § < 100; § = j+1)
x[1]1 3] = 2 * x[1] [J];

* Row-Major order: rows stored one after the other (i is row index,
] Is column index)

« Exchange the nesting of loops taking advantage of spatial
locality. Maximize use of a cache block before it is replaced.

CS425 - Vassilis Papaefstathiou

Data blocking

Code transformations for temporal locality

» Reduce reuse distance for same data
» Organize code so that data is accessed in blocks

» Best performance if block accessed many times and few
accesses to data outside block

Example: Matrix multiplication

S/« Before =/
for (1 = 0; 1 < H; i = i+l)
for (j = 0; j < H; j = j+l)
{r = 0;
for (k = 0; k< N; ¥k =k + 1)
r=r + yl[i]l [k]+=z[k][]];
x[1] [3] = x;

CS425 - Vassilis Papaefstathiou

Data blocking

Array accesses without blocking

» Snapshot with i=1

Assume cache line holds one array element

Two innermost loops access N? elements of z, N elements of y, N elements of x
N x (N2 + 2N) = 2N? + N3 memory accesses

Need cache space at least N° + N to exploit temporal locality

yvyvyy

Total required cache space to exploit locality = N?(for Z) + N(for Y) — Total misses = 2N2 + N3
CS425 - Vassilis Papaefstathiou

Data blocking

Example: Blocked matrix multiplication

S+ After =/
for (33 = 0; jj < N; jj = jj+B)

for (kk = 0; kk < H; kk = kk+BE)

for (i = 0; i = H; i = i+l)
for (3 = j33; j < min(jj+B,NH); j = j+1)
{r =0;

for (k = kk; k < min(kk+E,H); kK =k + 1)

r=r + y[i] [k]l*z[k] []];
x[i] [J] = =[i]1[]] + x;
}:

» Load a block of z of size B x B
» Compute partial sum for B elements of x
» Load next block

> g X % x (N x 2B+ B?) = % + N? memory accesses

Total required cache space to exploit locality = B?(for Z) + B(for Y)
CS425 - Vassilis Papaefstathiou

Data blocking

Blocked matrix multiplication

J K J
X|ol11213[4]5] |Y|[ol1[2]3[4]5] [Z[0o]l1]2|3]4]5

W CH

W O

O Wk =0

AWk =

CS425 - Vassilis Papaefstathiou

Classification of Cache Optimizations

* Reduce Miss Penalty
 Reduce Miss Rate

* Reduce Hit Time?
—Small and Simple Caches
— Virtually Addressed Caches
— Pipelined Caches
— Trace Caches (storing traces of instructions)

CS425 - Vassilis Papaefstathiou

