CS425
Computer Systems Architecture

Fall 2024

Metrics

CS425 - Vassilis Papaefstathiou

Outline

« Measurements and metrics:
— Performance, Cost, Dependabillity, Power

» Guidelines and principles in the design of computers
* CPU Performance

CS425 - Vassilis Papaefstathiou

Major Design Challenges

* Power

« CPU time

« Memory latency/bandwidth
 Storage latency/bandwidth
* Transactions per second
 [Intercommunication

* Dependabillity

Everything Looks a Little Different

CS425 - Vassilis Papaefstathiou

R

p

Charge external capacitance

3

Power Consumption

Discharge external capacitance

10 L

C /VDD
—_ — 2
lCUfrent Edynamic_ Q VDD - CL VDD | -

current == ov

Q =C_Vpp

A

777

VDD

c, /

oV Y5 E4 thermal energy on Rp Y2 E gynamic Stored on C

— Y5 E4 stored on C,

becomes thermal energy on Ry

(since Ec =% C| Vpp?)

P gynamic= 72 C, Vpp? frequency

CS425 - Vassilis Papaefstathiou 4

Power Equations

Power g, namic = ¥2 X Capacitive load x Voltage? x Frequency

Energyqynamic = Capacitive load x Voltage?

Power... = Current,.. X Voltage

* Power due to switching more transistors increases
« Static power due to leakage current increasing

CS425 - Vassilis Papaefstathiou

Power and Energy

* Energy to complete operation (Joules)
— Corresponds approximately to battery life
— (Battery energy capacity actually depends on rate of discharge)

« Peak power dissipation (Watts = Joules/second)
— Affects packaging (power and ground pins, thermal design)

* d/d,, peak change in supply current (Amps/second)

— Affects power supply noise (power and ground pins, decoupling
capacitors)

CS425 - Vassilis Papaefstathiou

Peak Power versus Lower Energy

Peak A

Power
J/sec

Integrate power
~“curve to get energy

Time
« System A has higher peak power, but lower total energy
« System B has lower peak power, but higher total energy

CS425 - Vassilis Papaefstathiou

Measuring Reliability (Dependability)

Reliability equations

MTTF = Mean Time To Failure

: : - 109
FIT = Failures In Time (per billion hours) = VITTE
MTTR = Mean Time to Repair (MTBF = MTTF + MTTR)
. MTTF
Module availability = MTTE — MTTR
#components
FiTsysem= »_ FIT;
i=1

MTTF = 1,000,000 hours = FIT =?

Interesting Read: https://spectrum.ieee.org/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder

CS425 - Vassilis Papaefstathiou

https://spectrum.ieee.org/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder

Comparing Design Alternatives

Design X is n times faster than design Y
|
Execution timeY PerformanceY Performanr:ex

n= , - - —
Execution timey | Perforl'nanceY
Performancex

» Wall-clock time: time to complete a task
» CPU time: time CPU is busy
» Workload: Mixture of programs (including OS) on a system

» Kernels: Common, important functions in applications

» Microbenchmarks: Synthetic programs trying to:

» Isolate components and measure performance
» Imitate workloads of real world in a controlled setting

CS425 - Vassilis Papaefstathiou

Benchmark Suites

Desktop (SPEC = Standard Performance Evaluation Corporation, 12 INT, 17 FP, 1980)

» SPECCPU (revised every few years)
» Real programs measuring processor-memory activity

Multi-core desktop/server
» SPECOMP, SPECMPI (scientific), SPECapc (graphics)
» Focus on parallelism, synchronization, communication
Client/Server

» SPECjbb, SPECjms, SPECjvm, SPECsfs, SPECmail SPECrate, SPECWeb ...
» Measuring throughput (how many tasks per unit of time)
» Measuring latency (how quickly does client get response)

Embedded systems

» EEMBC, MiBench
» Measuring performance, throughput, latency

The weakness of one benchmark is covered by the other benchmarks
CS425 - Vassilis Papaefstathiou

10

Summarizing performance

Arithmetic mean of wall-clock time

» Biased by long-running programs

» May rank designs in non-intuitive ways:
» Machine A: Program P; — 1000 secs., P> — 1 secs.

» Machine B: Program P; — 800 secs., P, — 100 secs.

» What if machine runs P> most of the time?
Means

» Total time ignores program contribution to total workload
» Arithmetic mean biased by long programs
» Weighted arithmetic mean a better choice?

» How do we calculate weights?

CS425 - Vassilis Papaefstathiou

11

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight; x Time;

=1

Example, W(1) = W(2) = 50

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 500.50 55.00 20.00

CS425 - Vassilis Papaefstathiou

12

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight; x Time;

=1

Example, W(1) = 0.909 W(2) = 0.091

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 91.91 18.19 20.00

CS425 - Vassilis Papaefstathiou

13

Summarizing performance (cont.)

Weighted arithmetic mean

n
> Weight; x Time;

i=1

Example, W(1) = 0.999 W(2) = 0.001

Computer A | Computer B | Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40
Weighted mean 2.00 10.09 20.00

CS425 - Vassilis Papaefstathiou

14

Summarizing performance (cont.)

Measuring against a reference computer

__ Execution ti _
SPEC a0, = — Bracuion 122 = Performance,, / Performance, g o ence

Execution time,
fi . o

o _ SPECuaio, _ ~Execution time . EXecution timeg _ Performances,
"~ SPEC a0, Erecutiontimeerence — Execution timea Performanceg

Execution timeg

Using ratios

» Ratios against reference machine are independent of
running time of programs

CS425 - Vassilis Papaefstathiou

15

Summarizing performance (cont.)

Geometric mean

n
d 1] sPec,...i)
=1

Geometlric meany
Geometric meang

= Geometric mean(

)

@ >

Used by SPEC98, SPEC92, SPEC95, ..., SPEC2006

CS425 - Vassilis Papaefstathiou

16

Pros and cons of geometric means

Pros

» Consistent rankings, independent of program frequencies
» Not influenced by peculiarities of any single machine

Cons

» Geometric mean does not predict execution time

» Sensitivity to benchmark vs. machine remains
» Encourages machine tuning for specific benchmarks
» Benchmarks can not be touched, but compilers can!

» Any “averaging” metric loses information

CS425 - Vassilis Papaefstathiou

17

Qualitative principles of design

Taking advantage of parallelism

>

>

>

»

Use pipelining to overlap instructions

Use multiple execution units

Use multiple cores

Use multiple processors to increase throughput (system level: scalability)

Locality (spatial and temporal locality)

>

Programs reuse instructions and data

» 90-10 rule

>

» 90% of execution time spent running 10% of instructions
Programs access data in nearby addresses (spatial)

CS425 - Vassilis Papaefstathiou

18

Qualitative principles of design (cont.)

Make the common case fast

» Trade-off’s in design (e.g. performance vs. power/area)
» Provide efficient design for the common case
» Amdahl’'s Law

Example:
First optimize instruction fetch and decode unit instead of multiplier

CS425 - Vassilis Papaefstathiou

19

Amdahl’s Law

Execution time for entire task without using the enhancement

Speedup = — . . .
Execution time for entire task using the enhancement when possible
execution timenew = execution timegyg x
fracrfonenhanceﬂ)
speedUPenhanced

((1 — fractionenhanced) +

execution time gy

speedu = on ti -
0 Poverall execution timenew

1
R f] ennance
(1 —_ fraCfIOngnhanﬁeﬂ) + Sgﬁ&eﬁmc:d

1
— :
1 — fr’& Cnﬂnenhanced

-|_ﬂ|1:j) Tnew

G-n N — (-0 [

CS425 - Vassilis Papaefstathiou

Upper Limit: speedupoverai

20

Amdahl’s Law example
 New CPU 10X faster

* 1/0 bound server, so 60% time waiting for 1/0O

1
Speedupoverall o i Fraction enhanced
(1— Fl’aCtl()n enhanced) +
Speedupenhanced
_ 1 L 156

1-04)+ 22 064
10

« Apparently, its human nature to be attracted by 10X faster,
VS. keeping in perspective its just 1.6X faster

CS425 - Vassilis Papaefstathiou

21

Processor Performance

CPU time

CPU time = CPU clock cycles x Clock cycle time
PU cl /
CP| — CPU clock cycles

instruction count
CPU time = instruction count x CPI x cycle time =

. instructions clock cycles seconds
CPU time = X — —— X
program instructions clock cycles

CS425 - Vassilis Papaefstathiou

22

Cycles Per Instruction (CPI)

“Average Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x > CPI, xIC;
j=1
IC,

CPI=) CPI,xF, whereF, = —
= Instructio n Count

“Instruction Frequency”

CS425 - Vassilis Papaefstathiou

23

Example: Calculating CPI bottom up

Run benchmark and collect workload characterization
(simulate, machine counters, or sampling)

Base Machine (Reg / ReQ)

Op Freq CPI F*CPI, (% Time)
ALU 50% 1 0.5 (33%)
Load 20% 2 0.4 (27%)
Store 10% 2 0.2 (13%)
Branch 20% 2 0.4 (27%)
e 1.5

Typical Mix of

Instruction types

In program

Design quideline: Make the common case fast
MIPS 1% rule: only consider adding an instruction if it is shown to add 1% performance
Improvement on reasonable benchmarks.

CS425 - Vassilis Papaefstathiou

Processor Performance

CPU time = instruction count x CPI x cycle time

How can CA help?

» Technology has been providing faster clock speeds

» Main performance factor for almost 20 years
» Trend seems to reverse
» Limitations due to power consumption, reliability

» Architecture can pack more computing power in same area
» Architecture can improve CPI
» Algorithms and compilers can reduce instruction count

CS425 - Vassilis Papaefstathiou

25

Price / Performance

benchmark for online transaction processing (OLTP) is TPC-C

10,000,000 R~
= 1 700
2 i, S
g '\\F S S
2 _— S

1,000,000 | .
s 1500
o o TPM S
& 1400 32
3 —o— TPM/$1000 ®
© _ | =
% 100,000 | price 300 &
E -, 1 200
2 S
- .‘\‘__-. o 1100

1{].{:":][" - 1 L 1 1 L 'El

P N N R O
F & g‘}ﬁ q-,\‘ﬁ& & B S S P
qﬁ :;lé o % & *'E?-F) w:g':} - -
E,:-J:a- E,:-J:a- q‘;“ﬂ @ﬁ ﬁ&ﬁ @q?' Qﬁ% & #zﬁ fzﬂﬁ
a8 o @ SAEES SRS S
¢ @ &9 & o o 2% & &°

CS425 - Vassilis Papaefstathiou

