
CS425 - Vassilis Papaefstathiou

CS425
Computer Systems Architecture

Fall 2024

Re-Order Buffer:
Precise Exceptions and Speculation

1

Exception Behavior with ROB

CPI = CPIIDEAL + StallsSTRUC + StallsRAW + StallsWAR + StallsWAW + StallsCONTROL

• Have to maintain:
– Data Flow

– Exception Behavior

CS425 - Vassilis Papaefstathiou

Dynamic instruction scheduling (HW) Static instruction scheduling (SW/compiler)

Scoreboard (reduce RAW stalls) Loop Unrolling

Register Renaming (reduce WAR & WAW stalls)

•Tomasulo

• Reorder buffer

SW pipelining

Branch Prediction (reduce control stalls) Trace Scheduling

Multiple Issue (CPI < 1)

Multithreading (CPI < 1)

2

Device Interrupt

add r1,r2,r3

subi r4,r1,#4

slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)

lw r3,4(r4)

add r2,r2,r3

sw r2,8(r4)

N
e
tw

o
rk

 I
n

te
rr

u
p

t
O

r C
o
u
ld

 b
e
 in

te
rru

p
te

d
 b

y
 d

is
k

Note that priority must be raised to avoid recursive interrupts!

Raise priority

Disable All Ints

Save registers

lw r1,20(r0)

lw r2,0(r1)

addi r3,r0,#5

sw r3,0(r1)

Restore registers

Clear current Int

Re-enable All Ints

Restore priority

RTE

CS425 - Vassilis Papaefstathiou 3

Types of Interrupts/Exceptions

• I/O device request

• Invoking an operating system service from a user program

• Breakpoint (programmer-requested interrupt)

• Integer arithmetic overflow

• FP arithmetic anomaly

• Page fault (not in main memory)

• Misaligned memory accesses (if alignment is required)

• Memory protection violation

• Using an undefined or unimplemented instruction

• Hardware malfunctions

• Power failure

CS425 - Vassilis Papaefstathiou 4

Precise Interrupts/Exceptions

• An interrupt or exception is precise if
there is an instruction (or interrupt
point) for which:

– All instructions before this instruction
have fully completed

– None of the instructions after this
instructions (including the interrupting
instruction) has modified the machine
state

• This means that we can restart the
execution from the interrupt point and
still “get the correct results”

– In the example: the Interrupt point is the
lw instruction

add r1,r2,r3

subi r4,r1,#4

slli r4,r4,#2

lw r2,0(r4)

lw r3,4(r4)

add r2,r2,r3

sw r2,8(r4)

E
x

te
rn

a
lI

n
te

rr
u

p
t In

te
rru

p
t h

a
n

d
le

r

CS425 - Vassilis Papaefstathiou 5

Imprecise Interrupt/Exception

• An exception is imprecise if the processor state when an
exception is raised does not look exactly as if the instructions
were executed sequentially in strict program order

• Occurrence in two possibilities:
– The pipeline may have already completed instructions that are later in

program order

– The pipeline may have not yet completed some instructions that are
earlier in program order

CS425 - Vassilis Papaefstathiou 6

Precise interrupt point requires multiple
PCs when there are delayed branches

addi r4,r3,#4

sub r1,r2,r3

bne r1,there

and r2,r3,r5

<other insts>

PC:

PC+4:

Interrupt point described as <PC, PC+4>

addi r4,r3,#4

sub r1,r2,r3

bne r1,there

and r2,r3,r5

<other insts>

Interrupt point described as:

<PC+4, there> (branch was taken)

or

<PC+4, PC+8> (branch was not taken)

PC:

PC+4:

CS425 - Vassilis Papaefstathiou 7

• Restartability does not require preciseness. However,
preciseness makes restarts much simpler

• Simplifies the Operating System (OS)
– Less state needs to be saved away if unloading process.

– Quick to restart (for fast interrupts)

• Several interrupts/exceptions need to be restartable

– i.e. TLB faults. Fix translation and then restart the faulting load/store

– IEEE gradual underflow, illegal operation,

e.g:

Want to take exception, replace NaN with 1, then restart.

0→x operationillegalNaNf _
0

0
)0(+=

x

x
xf

)sin(
)(=

Why do we need precise interrupts?

CS425 - Vassilis Papaefstathiou 8

Precise Exceptions in 5-stage RISC

• Exceptions may occur in different stages of the processor pipeline
(i.e. out of order):

– Arithmetic exceptions occur in execution stage

– TLB faults can occur in instruction fetch or memory stage

• How do we guarantee precise exceptions? Mark the instructions
with an “exception status” and wait until the WB stage to take the
exception

– Interrupts are marked as NOPs (like bubbles) that are placed into pipeline
instead of an instruction.

– Assume that interrupt condition persists in case NOP flushed

– Clever instruction fetch might start fetching instructions from interrupt
vector, but this is complicated and needs to switch to supervisor mode,
saving of one or more PCs, etc

CS425 - Vassilis Papaefstathiou 9

Another look at the exception problem

• Use the pipeline!

– Each instruction has an exception status field.

– Keep the PCs for every instruction in the pipeline.

– Check the exception status when the instruction reaches the WB stage

• When an instruction reaches the WB stage and has an exception:

– Save PC EPC, Interrupt vector addr PC

– Convert all fetched instructions to NOPs

• It works because of in-order completion/WB

P
ro

g
ra

m
 F

lo
w

Time

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Data TLB

Bad Inst

Inst TLB fault

Overflow

CS425 - Vassilis Papaefstathiou 10

Instruction status: Read Exec Write

Instruction j k Issue Oper Comp Result

LD F6 34+ R2 1 2 3 4

LD F2 45+ R3 5 6 7 8

MULTD F0 F2 F4 6 9 19 20

SUBD F8 F6 F2 7 9 11 12

DIVD F10 F0 F6 8 21 61 62

ADDD F6 F8 F2 13 14 16 22

Functional unit status: dest S1 S2 FU FU Fj? Fk?

Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No

Mult1 No

Mult2 No

Add No

Divide No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
62 FU

In-order issue

Scoreboard Example: Cycle 62

CS425 - Vassilis Papaefstathiou

Out-of-order commit!

Out-of-order execute

11

Tomasulo Example: Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56 57

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU Result

Reg File M*F4 M(A2) (M-M+M) (M-M)

In-order issue

Out-of-order commit!

Out-of-order execute

CS425 - Vassilis Papaefstathiou 12

Issue: “Fetch” unit

• Instructions from a potentially mispredicted branch path have
been already executed.

• Instruction fetch decoupled from execution

Instruction Fetch

with

Branch Prediction

Out-Of-Order

Execution

Unit

Return to the right path when

the outcome of the branch is known

Instructions for

Execution

CS425 - Vassilis Papaefstathiou 13

Branch must execute fast for loop overlap!

• In the loop-unrolling example, we assume that the branches are executed
from a “fast” integer unit to achieve overlap!

Loop: LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

• What happens if the branch depends on the outcome of MULTD?
– We lose all benefits

– We have to predict the outcome of the branch

– If we predict “taken” the prediction would be correct most of the time.

CS425 - Vassilis Papaefstathiou 14

Prediction: Branches, Dependencies, Data

• Branch Prediction is necessary for good performance

• We studied branches in the previous lecture. Modern
architectures now predict many things: data dependencies,
actual data, and results of groups of instructions

• Why does prediction work?
– Underlying algorithm has regularities.

– Data that is being operated on has regularities.

– Instruction sequence has redundancies that are artifacts of way that
humans/compilers think about problems.

CS425 - Vassilis Papaefstathiou 15

Problem: Out-of-Order Completion

• Scoreboard and Tomasulo operate as follows:
– In-order issue, out-of-order execution, out-of-order completion

• We need a way to synchronize the completion stage of
instructions with the program order (i.e. with issue-order)

– Easiest way is with in-order completion (i.e. re-order buffer)

– Other Techniques (Smith paper): Future File, History Buffer

CS425 - Vassilis Papaefstathiou 16

Precise Interrupts and Speculation:

• During the Ιssue stage of instructions we operate as if as we
are predicting that all previous instructions do not generate
exceptions

– Branch prediction, data prediction

– If we speculate and are wrong, need to back up and restart execution
to the point at which we predicted incorrectly

– This is exactly same as precise exceptions!

• Common technique for precise interrupts/exceptions and
speculation: in-order completion or commit

– All modern out-of-order processors typically use a form of re-order
buffer (ROB)

CS425 - Vassilis Papaefstathiou 17

HW support for precise interupts/exceptions

• Idea behind Reorder Buffer (ROB): keep the instructions in
a FIFO, with the exact order that they are issued.

– Each ROB entry contains PC, dest reg/mem, result,
exception status

• When an instruction completes execution then the results
are placed in the allocated entry in the ROB.

– Supplies operands to other instruction between execution
complete & commit more registers like RS

– Tag results with ROB buffer number instead of reservation
station

• The instructions change the machine state at the commit
stage not on the WB in order commit values at head
of ROB are placed in registers

• This technique allows us to cancel/squash speculatively
executed instructions during mispredicted branches or
exceptions

CS425 - Vassilis Papaefstathiou

Reorder

BufferFP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

18

HW Support for Reorder Buffer (ROB)?

• How do we find the last “version” of each register ?

• Multi-ported ROB like the register file

• Integrate store buffer into ROB since we have in order commit. Stores use Result field for
ROB tag until data ready on CDB.

• Can we also integrate the reservation stations ?
CS425 - Vassilis Papaefstathiou

Reorder

Buffer
FP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Reorder Table

D
e
s
t

R
e
g

R
e
s
u

lt

E
x
c
e
p

ti
o

n
s
?

R
e
a
d

y

P
ro

g
ra

m
 C

o
u

n
te

r

In
s
tr

.
T
y
p

e

C
o

m
p

a
re

n
e
tw

o
rk

19

Tomasulo with ROB: Basic Block Diagram

CS425 - Vassilis Papaefstathiou 20

Four Stages of Tomasulo with ROB

1. Issue: Get Instruction from Op Queue
– If there are free reservation stations and reorder buffer slot, issue instr & send

operands & reorder buffer no. for destination (sometimes called “dispatch”)

2. Execution: Execute the Instruction in the Execution Unit (EX)
– When the values of the 2 source regs are ready then execute the instruction;

otherwise, watch CDB for result; when both in reservation station, execute; checks
RAW (“issue”)

3. Write result: End of Execution (WB)
– Write on Common Data Bus to all awaiting FUs & reorder buffer; mark reservation

station available.

4. Commit: Update the dst reg with the value from the reorder buffer
– When instr. at head of reorder buffer & result present, update register with result (or

store to memory) and remove instr from reorder buffer. Mispredicted branch or
exception flushes reorder buffer. (also called “graduation” or “retirement”)

CS425 - Vassilis Papaefstathiou 21

Tomasulo With Reorder buffer

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 L.D F0,10(R2) N

Ready

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2

Dest

Reorder Buffer

Registers

Commit ptr

ROB1

Instr. TypeValueDest.

Dest shows #ROB

22

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Reorder buffer (after 2 cycles)

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

N

N

N

Ready

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2

Dest

Reorder Buffer

Registers

Commit ptr

“2” means ROB2

Instr. TypeValueDest.

23

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Reorder buffer (after 3 cycles)

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADD.D F0,F4,F6 N

F4 L.D F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

N

N

N

Ready

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2

Dest

Reorder Buffer

Registers

5 0+R3

Commit ptr

Instr. TypeValueDest.

24

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Reorder buffer (after 1 cycle)

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

R3

F0

ROB5 S.D F4,0(R3)

ADD.D F0,F4,F6

N

N

F4 L.D F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

N

N

N

Ready

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2

5 0+R3

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest.

25

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

R3

F0

M[Α1]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

F4 M[Α1] L.D F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

N

N

N

Ready

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest.

26

3 DIVD ROB2,R(F6)
2 ADDD R(F4),Μ[Α2]

Tomasulo With Reorder buffer

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

R3

F0

M[Α1]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

F4 M[Α1] L.D F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0 Μ[Α2]

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

N

N

Υ

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest. Ready

27

3 DIVD ROB2,R(F6)
2 ADDD R(F4),Μ[Α2]

Tomasulo With Reorder buffer

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue

Μ[Α2]

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

R3

F0

M[Α1]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

F4 M[Α1] L.D F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

DIV.D F2,F10,F6

ADD.D F10,F4,F0

N

N

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest. Ready

28

Tomasulo With Reorder buffer

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

R3

F0

M[Α1]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest. Ready

29

--

F0

M[10]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

F4 M[10] L.D F4,0(R3) Y

-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Reorder buffer: Precise Exceptions

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

Ex

Y

Y

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2

Dest

Reorder Buffer

Registers

Many Exceptions?

Instr. TypeValueDest. Ready

30

3 DIVD ROB2,R(F6)
2 ADDD R(F4),Μ[Α2]

Reorder buffer: Branch Misprediction

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue

Μ[Α2]

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

R3

F0

M[Α1]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

F4 M[Α1] L.D F4,0(R3) Y

-- BNE F2,<…> Y

F2

F10

DIV.D F2,F10,F6

ADD.D F10,F4,F0

N

N

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest. Ready

Branch misprediction?

31

3 DIVD ROB2,R(F6)
2 ADDD R(F4),Μ[Α2]

Reorder buffer: Branch Misprediction

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue

Μ[Α2]

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

-- BNE F2,<…> Y

F2

F10

DIV.D F2,F10,F6

ADD.D F10,F4,F0

N

N

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

Commit ptr

Instr. TypeValueDest. Ready

Branch misprediction

Flush ROB=> Exception gone

32

--

F0

M[10]

<val2>

S.D F4,0(R3)

ADD.D F0,F4,F6

Y

Ex

F4 M[10] L.D F4,0(R3) Y

-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIV.D F2,F10,F6

ADD.D F10,F4,F0

L.D F0,10(R2)

N

N

N

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

What about

memory hazards???

Instr. TypeValueDest. Ready

33

Memory Disambiguation: WAW/WAR Hazards

• Like Hazards in Register File, we must avoid hazards through
memory:

– WAW and WAR hazards through memory are eliminated with
speculation because the actual updating of memory occurs in order,
when a store is at the head of the ROB, and hence, no earlier loads or
stores can still be pending.

CS425 - Vassilis Papaefstathiou 34

Memory Disambiguation: RAW Hazards

• Challenge: Given a load that follows a store in program order, are these
two related?

– What if there is a RAW hazard between the store and the load?
Eg: SD R5,0(R2)

LD R6,0(R3)

• Can we proceed and issue the load to the memory system?
– Store address could be delayed for a long time by some calculation that leads to R2

(e.g. divide).

– We might want to issue/begin execution of both operations in same cycle.

– Solution1: Answer is that we are not allowed to start load until we know that address
0(R2) 0(R3)

– Solution2: We might guess/predict whether or not they are dependent (called
“dependence speculation”) and use reorder buffer to fixup if we are wrong.

CS425 - Vassilis Papaefstathiou 35

HW support for Memory Disambiguation

• Store buffer keeps all pending stores to memory, in program order

– Keep track of address (when becomes available) and value (when becomes available)

– FIFO ordering: will retire stores from this buffer in program order

• When issuing a load, record the head of the store buffer (which stores precede)

• When we have the address of the load, check the buffer:

– If any store prior to load is waiting for its address, stall load

– If load address matches earlier store address (associative lookup), then we have a memory-
induced RAW hazard:

o store value available return value

o store value not available return ROB number of source

– Otherwise, send out request to memory

• Stores commit in order, there are no WAW/WAR hazards in memory.

CS425 - Vassilis Papaefstathiou 36

F4 ROB3 L.D F4, 10(R3) N

Memory Disambiguation

CS425 - Vassilis Papaefstathiou

To
Memory

FP adders FP multipliers

Reservation

Stations

FP Op

Queue
ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F5

R3

ROB2

R[F4]

S.D F5, 10(R3)

L.D F5,32(R2)

S.D F4, 0(R3)

N

N

Y

Done?

Dest
Dest

Oldest

Newest

from
Memory

2 32+R2

Dest

Reorder Buffer

Registers

10+R3

address in ROB

37

Register Renaming

• What happens with branches?

• Tomasulo can handle renaming across branches

register

renaming

WAW WAR

CS425 - Vassilis Papaefstathiou 38

F0 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30

Explicit register renaming

• Hardware equivalent of static, single-assignment (SSA) compiler form

• Physical register file bigger than ISA register file (e.g. 32 Phys regs και 16 ISA regs)

• Upon issue, every instruction that write a register allocates a new physical register from
the freelist

CS425 - Vassilis Papaefstathiou

Done?

Oldest

Newest

P32 P34 P36 P38 P60 P62

Current Map Table

Freelist

P0 P2 P4 P6 P8 P10 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

39

F0 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30

Explicit register renaming

• Note that physical register P0 is “dead” (or not “live”) past the
point of this load.

– When we commit the load, we free up

CS425 - Vassilis Papaefstathiou

F0 P0 LD P32,10(R2) N

Done?

Oldest

Newest

P32 P2 P4 P6 P8 P10 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

P34 P36 P38 P40 P60 P62

Current Map Table

Freelist

Issue LD F0,10(R2)

40

F0 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30

Explicit register renaming

CS425 - Vassilis Papaefstathiou

F10

F0

P10

P0

ADDD P34,P4,P32

LD P32,10(R2)

N

N

Done?

Oldest

Newest

P32 P2 P4 P6 P8 P34 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

P36 P38 P40 P42 P60 P62

Current Map Table

Freelist

Issue ADD F10,F4, F0

41

F0 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30

Explicit register renaming

CS425 - Vassilis Papaefstathiou

--

--

F2

F10

F0

P2

P10

P0

BNE P36,<…> N

DIVD P36,P34,P6

ADDD P34,P4,P32

LD P32,10(R2)

N

N

N

Done?

Oldest

Newest

P32 P36 P4 P6 P8 P34 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

P38 P40 P42 P44 P60 P62

Current Map Table

Freelist

P38 P40 P44 P48 P60 P62 Checkpoint at BNE instruction

42

F0 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30

Explicit register renaming

CS425 - Vassilis Papaefstathiou

--

F0

F4

--

F2

F10

F0

P32

P4

P2

P10

P0

SD P40,0(R3)

ADDD P40,P38,P6

Y

Y

LD P38,0(R3) Y

BNE P36,<…> N

DIVD P36,P34,P6

ADDD P34,P4,P32

LD P32,10(R2)

N

Y

Y

Done?

Oldest

Newest

P40 P36 P38 P6 P8 P34 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

P42 P44 P48 P50 P0 P10

Current Map Table

Freelist

P38 P40 P44 P48 P60 P62 Checkpoint at BNE instruction

43

F0 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30

Explicit register renaming

CS425 - Vassilis Papaefstathiou

F2

F10

F0

P2

P10

P0

DIVD P36,P34,P6

ADDD P34,P4,P32

LD P32,10(R2)

N

Y

Y

Done?

Oldest

Newest

Current Map Table

Freelist

P38 P40 P44 P48 P60 P62 Checkpoint at BNE instruction

P32 P36 P4 P6 P8 P34 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

P38 P40 P44 P48 P0 P10
Speculation

error fixed

by restoring

map table

and freelist

44

