
CS425 Simulation Assignment 3 1

CS425: Computer Systems Architecture

Simulation Assignment 3

Assignment Date: 30/12/2025

Due Date: 02/02/2026 - 23:59

Cache Simulation

The purpose of this assignment is to introduce you to architectural exploration using simulation

and help you familiarize with the details of multi-level cache hierarchies. You have to simulate

caches yourself and measure their quantitative properties by applying different configurations.

You will also see the impact of alternative design choices in the cache miss rates and IPC.

For the simulation you will use the gem5 simulator (www.gem5.org). Although the assignment

does not require prior experience with gem5, it is recommended that you take some time to

follow the gem5 tutorial:

www.gem5.org/documentation/learning_gem5/introduction/

Simulation Assignment 3 – Code Repository

For the infrastructure of this assignment, we have created personal git repositories on the

Department’s gitlab server for each student enrolled in the course. Your personal repository is

in the form:

https://gitlab-csd.datacenter.uoc.gr/hy425_2025f/sim3_submits/sim3-csdXYZWA

Get a clone of your repository with git clone using your username

(csdXYZWA@csd.uoc.gr). Access is only available via the University network and the VPN.

(Do not fork the repo – Work directly on the cloned git repo).

The repo includes the following:

• README.md : Quick installation and run instructions

• benchmarks/ : contains five precompiled benchmarks for you to run

• config/ : gem5 configuration of an out-of-order core with multi-level caches

• logs/ : this folder will contain the output statistics generated by your simulations

• setup.sh : Shell script for setting environment variables and PATHs

• runall.sh : Shell script for quickly running a gem5 simulation with the given

configuration

Study the folders and the files to get an idea of the repo and feel free to create your own scripts

as you see fit.

http://www.gem5.org/
http://www.gem5.org/documentation/learning_gem5/introduction/
mailto:csdXYZWA@csd.uoc.gr

CS425 Simulation Assignment 3 2

In this assignment you will compile gem5 to target the x86 ISA. The build requirements can

be found here: https://www.gem5.org/documentation/general_docs/building

Check the README.md file which provides a quick installation and running guide. The gem5

compilation step takes time so complete it as soon as possible!

(You can reuse your previous gem5 installation from Simulation Assignment 2 and save a lot

of time).

Assignment Tasks

To run a batch of five (5) benchmarks with the simulator you have to use the following

command inside the sim3-username directory:

./runall.sh [List of arguments]

This command will run all the benchmarks while simulating a setup with an Out-Of-Order

CPU (O3CPU) and a good performing branch predictor (TournamentBP). You are

encouraged to examine thoroughly the runall.sh to figure out the different arguments that

you will be allowed to change. In this assignment you will tweak different parameters that are

only related to caches and their policies (list below). Note that the --Insts [Instruction

Count] argument means that for each benchmark, gem5 simulates [Instruction Count]

instructions. You can change this parameter during early testing but for generating final

numbers you should have at-least 20 million instructions. If you set a very large number of

instructions the simulation time will increase dramatically. Ensure that your comparisons are

based on the same instruction count between different benchmarks and/or settings to extract

uniform and fair results. Also, ensure that this parameter is large enough to extract meaningful

results. An estimated number would be between 20-50 million instructions and this should

take 2-5 minutes per benchmark; so start working on the assignment as soon as possible!

It is important to get familiar with the generated m5out directories under the

logs/benchmarkN directories after each run. These directories include files showing the

simulated configuration and their statistical information.

Task 1: Measure L1 Miss Rate and IPC

Your first task is to explore the effects of cache-block/cache-line size and associativity in an

L1 data cache. Assume that your L1 data cache budget is 64 KBytes, the cache supports the

LRU replacement policy and there is no hardware prefetcher in the L1 cache. Run experiments

with varying block sizes and associativity for all the given benchmarks, draw miss-rate and

IPC graphs similar to those presented in class and find the configuration that gives the highest

IPC. Also, note that all other parameters must remain fixed during Task 1.

https://www.gem5.org/documentation/general_docs/building

CS425 Simulation Assignment 3 3

Explore the following block sizes:

(i) 32 bytes, (ii) 64 bytes, (iii) 128 bytes

and the following associativity settings:

(i) direct-mapped, (ii) 2-way, (iii) 4-way, (iv) 8-way

Task 2: Measure L1/L2 Combined Miss Rate and Overall IPC

In this part of the assignment, you need to find the best performing L2 cache size, associativity,

and replacement policy (only for L2) while keeping fixed the L1 cache configuration you found

in Task 1 (best performing). Run experiments with varying parameters for all the given

benchmarks, draw global miss-rates (combination of L1 and L2) and IPC graphs similar to

those presented in class and find the L2 configuration that gives the highest IPC.

Explore the following L2 cache sizes:

(i) 256KiB, (ii) 512KiB

the following L2 associativity settings:

(i) 4-way, (ii) 8-way, (iii) 16-way

and the following L2 replacement policies:

(i) LRURP, (ii) RandomRP, (iii) FIFORP

Task 3: Measure the Impact of Hardware Prefetchers

Use the best performing L1 and L2 cache configurations that you found in Tasks 1 & 2 and

find which prefetcher type and under which configuration (prefetch degree) achieves the best

results when employed only on the L2 cache. Prefetchers are hardware schemes that attempt to

exploit spatial locality beyond cache-block boundaries and can vary from simple to extremely

sophisticated. Typically, when a cache experiences a miss for line A, then a simple next-K-line

prefetcher fetches the next K sequential cache-blocks, if not already present in the cache; K is

known as the prefetch degree.

Explore the following prefetcher types:

(i) StridePrefetcher (ii) TaggedPrefetcher

With a prefetch degree in the range of 1 up-to 4 cache-lines.

Does hardware prefetching offer performance benefits, i.e. IPC improvements? Quantify the

their performance impact.

An important implication of prefetching is the need for higher memory bandwidth. Based on

the memory traffic statistics of the simulator (system.mem_ctrl.dram.bwTotal::total), find the

prefetcher configuration that best balances between IPC and memory bandwidth.

Hint: Calculate the metric Memory Bandwidth/IPC.

CS425 Simulation Assignment 3 4

Assignment Delivery

Report your findings and explanations (for all Tasks 1-3) in the answers.md file and use

tables and/or graphs.

Commit and push the following files on your designated gitlab repo:

• answers.md with your report and comments

• All the logs (benchmark1, benchmark2, …) folders/subfolders generated by

your simulations

• Any other files or scripts you consider useful

Indicative git commands:

• git status (see the changes)

• git config user.email csdXYZW@csd.uoc.gr

• git config user.name "Name Surname"

• git add answers.md logs* (add all related folders)

• git commit -m “sim3 delivery” (commit and message)

• git push (use your username and password)

Make sure that the push was successfully done and

that your files have been uploaded on the gitlab repo.

