CS425
Computer Systems Architecture

Fall 2025
Pipelining

CS425 - Vassilis Papaefstathiou

Outline

 Processor review

 Hazards
— Structural
— Data
— Control

 Performance
« Exceptions

CS425 - Vassilis Papaefstathiou

Clock Cycle

* Old days: 10 levels of gates

» Today: determined by numerous time-of-flight issues + gate
delays
— clock propagation, wire lengths, drivers

- @ D
Latch
or
register ‘
' A 4

CS425 - Vassilis Papaefstathiou

Datapath vs Control

« Datapath: Storage, FU, interconnect sufficient to perform the desired functions
— Inputs are Control Points
— Outputs are signals

« Controller: State machine to orchestrate operation on the data path
— Based on desired function and signals

Datapath Controller
_ -’
signals _ 1 :
_- | |
-
-
-
-
—
>
-
L/‘ Control Points \ ,

CS425 - Vassilis Papaefstathiou

“Typical” RISC ISA

« 32-bit fixed format instruction (3 formats)
« 32 32-bit GPR (RO contains zero)
« 3-address, reg-reg arithmetic instruction

» Single address mode for load/store:
base + displacement
—no indirection

« Simple branch conditions

see: RISC-V, SPARC, MIPS, ARM, HP PA-Risc, DEC Alpha, IBM
PowerPC, CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

CS425 - Vassilis Papaefstathiou

Example: 32bit RISC

Register-Register

31

26 25 2120 16 15 11 10 6

5

Op

IRSlIRSZIRd I

Opx

Register-Immediate

31 26 25 2120 16 15
Op I Rs1 I Rd I Immediate
Branch
31 26 25 2120 16 15
Op I Rs1 ksz/opxl Immediate
Jump / Call
31 25
op | target
Example: lw $2, 100($5)
add $4, $5, $6

CE?Z% —$\%é;$flfls’ Iigggg!stathiou

Example Execution Steps

v

|
Operand

Fetch

Result

Store

Next

Instruction

Obtain instruction from
program storage

Determine required
actions and
instruction size

Locate and obtain
operand data

Compute result value
or status

Deposit results in
storage for later
use

Determine successor
Instruction

Memory
Processor program
regs
N
-/
F.U.s ;
Data
7

von Neuman
bottleneck

5-stage execution is a bit
different (see next slides)...

CS425 - Vassilis Papaefstathiou

Pipelining: Latency vs Throughput
Start:A|B|C D| _
30 40 40 40 40 20

B (TIS]E
= =
&
& =

Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

7’
(-

tl-

7’

CS425 - Vassilis Papaefstathiou

5-stage Instruction Execution - Datapath

Instruction : Instr. Decode : Execute : Memory : Write
Fetch : Reg. Fetch : Addr. Calc : Access : Back

Next PC

>
Next SEQ PC Next SEQ PC

IR <= mem[PC];
PC <= PC + 4

WB Data

A <= Reg[IR,]’
B <= Reg[IR,.]

rslt <= A opiz,, B
WB <= rslt - Data stationary control

— local decode for each instruction phase / pipeline stage
Reg[IR,4] <= WB -

CS425 - Vassilis Papaefstathiou

Visualizing Pipelining

Time (clock cycles)

: Cycle 1{Cycle 2 {Cycle 3 { Cycle 4 {Cycle 5 { Cycle 6 Cycle 7

o)
1 Ifetch Reg z a DMem g Reg
S L] L]
t
)

I. Ifetch Reg 3 DMem g Reg

: : : =) :
r H . . Ifetch g Reg ?E' g DMem 5 Reg :
e u u
r Z Ifetch Reg E DMem g Reg

CS425 - Vassilis Papaefstathiou

5-stage Instruction Execution - Control

IR <= mem[PC];

PC<=PC+4

ID A <=ReglIR]
B <=Regl[IR,]

— [T
bopA)

PC <= PC+IR;,

WB <= Mem]r]

Pipeline Registers: IR, A, B, r, WB

CS425 - Vassilis Papaefstathiou

Limits in Pipelining
 Limits to pipelining: Hazards prevent next instruction from

executing during its designated clock cycle

— Structural hazards: Resource conflicts, HW cannot support this
combination of instructions (single person to fold and put clothes away)

— Data hazards: Instruction depends on result of prior instruction still in
the pipeline

— Control hazards: Caused by delay between the fetching of instructions
and decisions about changes in control flow (branches and jumps).

In order: when an instruction is stalled, all instructions issued later than
the stalled instruction are also stalled.

CS425 - Vassilis Papaefstathiou 12

Example of Structural Hazard

o~ N D -

= P Q ==

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Ifetch

Reg

i

Ifetch

CS425 - Vassilis Papaefstathiou

Reg

DMem

Ifetch

{

pesssnsnnnn

Ifetch

Ifetch

DMem

OOITTTTTITT

i 23 E

22

Cycle 1 ECycIe 2 Cycle 3 : : Cycle 4 ECycle 5: 5 Cycle 6 Cycle 7

DMem

Reg

ALU

g DMem

Reg

13

Example of Structural Hazard

Time (clock cycles)

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 ECycIe 5 Cycle 6 Cycle 7

Load Ifetch :[Reg :[SMem E_ Reg
InStr 1 Ifetch :ﬂ: Reg :[
SR

ifetch | | Reg

ALU

s~ N 5D -

Instr 2

Stall 1 ubnlg

Reg

= D0 Q ==

Instr 3

How do you “bubble” this pipe (if instr1 = load)?’

CS425 - Vassilis Papaefstathiou

Example of Structural Hazard

Time (clock cycles)
Cycle 1 ECycIe 2 Cycle 3 Cycle 4 ECycIe 5 Cycle 6 Cycle 7

| Load Ifetch Reg :[BMem }I~ Reg
n : Z
‘:’ Instr 1 [:[: Reg
r. ;
Instr 2 een
O
I
d
e
f" Instr 3 pvem ‘ K

How do you “bubble” this pipe (if instr1 = load)?’
CS425 - Vassilis Papaefstathiou

Speed Up Equation of Pipelining

Average instruction time unpipelined

Speedup =
P P Average instruction time pipelined

_ CPI unpipelined o Clock cycle unpipelined
~ CPI pipelined Clock cycle pipelined

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction

= | + Pipeline stall clock cycles per instruction

For simple RISC pipeline, Ideal CPI = 1.

1 y Clock cycle unpipelined
1 + Pipeline stall cycles per instruction Clock cycle pipelined

1 -
= Pipeline depth
1 + Pipeline stall cycles per instruction * PIPEHIE EEp

CS425 - Vassilis Papaefstathiou 16

Speedup =

Example: Dual-port vs Single-port

* Machine A: Dual read ported memory (“Harvard Architecture”)

* Machine B: Single read ported memory, but its pipelined
Implementation has a 1.05 times faster clock rate

* |deal CPI = 1 for both

* Suppose that Loads/Stores are 40% of instructions executed
Average instruction timeg= CPI x Clock cycle timeg

Clock cycle time 5
1.05

= (1+04x1)x
= 1.3 x Clock cycle timep

« Machine A is 1.33 times faster (CPUtime = IC x Aver instr time)

Why would a designer allow structural hazards?
CS425 - Vassilis Papaefstathiou 17

Data Hazard

Time (clock cycles)

o~ N O —-

= D0 Q ==

add

sub

and

or

XOr

IF ID/RF EX MEM WB

r1,r2’r3 mm{ka:

DMem

r4,r1,r3 Hmt

ro,rl,r’/

r8,rl, r9

r10,rl,rl1l

CS425 - Vassilis Papaefstathiou

Ifetch

- Reg

Ifetch

Reg

DMem

1 Reg

v [

Reg

18

Read After Write

* Read After Write (RAW)
Instr; tries to read operand before Instr, writes it

CI: add rl,r”2,r3
J: sub r4,rl,r3

« Caused by a “Dependence” (in compiler nomenclature). This hazard
results from an actual need for communication.

CS425 - Vassilis Papaefstathiou

19

Write After Read

« Write After Read (WAR)
Instr; writes operand before Instr, reads it

<::I' sub r4,rl,r3
> add rl,r2,r3

K: mul ré6,rl,r7

« Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

« Can'’t happen in classic RISC 5 stage in-order pipeline because:

= All instructions take 5 in order stages, and
= Reads are always in stage 2, and
= Writes are always in stage 5

CS425 - Vassilis Papaefstathiou

20

Write After Write

« Write After Write (WAW)
Instr; writes operand before Instr, writes it.

<::I: sub rl,r4d,r3
J: add rl,r2,r3
K: mul ro,rl,r’

» Called an “output dependence” by compiler writers. This also results from
the reuse of name “r1”.

« Can'’t happen in classic RISC 5 stage in-order pipeline because:
= All instructions take 5 in order stages, and
= Writes are always in stage 5

« Will see WAR and WAW in more complicated pipelines

CS425 - Vassilis Papaefstathiou 21

Forwarding to avoid data hazards

Time (clock cycles)

add rl, r2, r3|tfee

- N O —

. sub r4,rl, r3

and ro6,rl,r7

-~ o a0

or r8,rl, r9

xor rl1l0,rl,rll

faf>

Ifetch

No Stall !

ttetch| | :El:

Ifetch B

itetch| |

=

—
I | L

DMem

==

& Y[

Ignore what you read from Register File

CS425 - Vassilis Papaefstathiou

DMem

DMem

t

22

HW Change for Forwarding

NextPC

3

2y <

D

«Q

7

®

n 5 Data
= Memory

Immediate

Xnuwi

What circuit detects and resolves this hazard?
Why we need forwarding lines for both inputs of the ALU?
CS425 - Vassilis Papaefstathiou

23

Forwarding to Avoid LW-SW Data Hazard

Time (clock cycles)

add rl, r2, r3|teen

- N O —

.1 1w rd4, O(rl)

sw rd,12 (rl)

~-ooa=0

Ifetch

or r8,r6,r9

Ifetch

xor rl1l0,r9,rll

CS425 - Vassilis Papaefstathiou

Data Hazard Even with Forwarding

Time (clock cycles)

lW rl, O(r2) Ifetch

sub r4d4,rl, ro

s~ N D -

Ol and r6,rl, r7

= D0 QO ==

or r8,rl, r9 eteh

CS425 - Vassilis Papaefstathiou

Data Hazard Even with Forwarding

Time (clock cycles)

lW rl, O (I‘Z) Ifetch

sub r4,rl, ro feteh

s~ N D -

O| and r6,rl,r7

DMem

= D0 QO ==

or r8,rl, r9 IfetCh

CS425 - Vassilis Papaefstathiou

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f:

assuming a, b, ¢, d ,e, and f in memory.

Slow code: Fast code:
LW Rb,b LW Rb,b

LW R

LW Rc,c\‘ c,C
ADD Ra,Rb.RC W Ree~,
SwW a,Ra ADD Ra,Rb,Rc
LW Re,e LW Rf f
W R SW aRa
SUB Rd,Re,Rf SUB Rd,Re,Rf
SW d,Rd SW d,Rd

CS425 - Vassilis Papaefstathiou

Control Hazard on Branches: Three Stage Stall

10: begq rl,r3,26 I'fetch I'E ‘

14: and r2,r3,r5 I recr I = |I‘E
18: or «ro6,rl,r7 I etchl | lﬁ‘ I'E
22: add r8,rl,r9 I rec\[][] = I'g

|

26: xor rl1l0,rl,rll

tetcn| | .H I .2

What do you do with the 3 instructions in between?
How do you do it?
Where is the “commit”?

CS425 - Vassilis Papaefstathiou 28

Branch Stall Impact

e If CPI =1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

« Two part solution:
— Determine branch taken or not sooner, AND
— Compute taken branch address earlier

 MIPS branch tests if register = 0 or =z 0

* MIPS Solution:
— Move Zero test to ID/RF stage
— Adder to calculate new PC in ID/RF stage
— 1 clock cycle penalty for branch versus 3

CS425 - Vassilis Papaefstathiou

29

Pipelined MIPS Datapath

Instruction i Instr. Decode Execute i Memory

Fetch i Reg.Fetch { Addr.Calc | Access

Alowa N

ereq

RD

Write
Back

* Interplay of instruction set design and cycle time.

CS425 - Vassilis Papaefstathiou

WB Data

30

Control Hazard on Branches: One Stage Stall

10: beqg r},r3,36 I

14: and r2,r3,r5

18: or «r6,rl,r7

22: add r8,rl,r9

36: XOr rfO,rl,rll

CS425 - Vassilis Papaefstathiou

Four Branch Hazard Alternatives

« #1. Stall until branch direction is clear (simplicity)

e #2: Predict Branch Not Taken

— Execute successor instructions in sequence

— “Squash” instructions in pipeline if branch actually taken
— Advantage of late pipeline state update

— 47% MIPS branches not taken on average

— PC+4 already calculated, so use it to get next instruction

Untaken branch instruction IF 1D EX MEM WB

Instruction i + | IF D EX MEM WB

Instruction i + 2 IF D EX MEM WB

Instruction { + 3 IF 1D] EX MEM WB
Instruction i + 4 IF D EX MEM WB
Taken branch instruction IF 1D EX MEM WB

Instruction i + | IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + 1 IF D EX MEM WEB

Branch target + 2 IF ID EX MEM WB

CS425 - Vassilis Papaefstathiou

32

Four Branch Hazard Alternatives

 #3: Predict Branch Taken

—53% MIPS branches taken on average

— But haven't calculated branch target address in MIPS
o MIPS still incurs 1 cycle branch penalty
o Other machines: branch target known before outcome

— What happens on not-taken branches?

CS425 - Vassilis Papaefstathiou

33

Four Branch Hazard Alternatives

#4: Delayed Branch

» Define branch to take place AFTER a following instruction

branch 1nstruction
sequential successor,
sequential successor,

-------- / Branch delay of length n
sequential successor,

branch target 1f taken
= 1 slot delay allows proper decision and branch target address in 5

stage pipeline
= MIPS uses this

CS425 - Vassilis Papaefstathiou

34

Scheduling Branch Delay Slots

A. From before branch B. From branch target C. From fall through
add $1,%2,53 sub $4,55,56 < add $1,%2,8$3
if $2=0 then __ if $1=0 then __
delay slot delay slot
add $1,$2,$3 OR $7,$8,$9
if $1=0 then
D— delay slot sub $4,55,56 <+—

becomes l becomes ,l becomes l

| sub $4,$5,$6 add 31,%2,53
if $2=0 then __ -— if $1=0 then __

add $1,$2,$3 OR $7,%$8,$9
add $1,$2,83

if $1=0 then
— sub $4,%$5,%$6 sub $4,35,56 <+—

« Ais the best choice, fills delay slot & reduces instruction count (IC)
* In B, the sub instruction may need to be copied, increasing IC

* In B/C, must be okay to execute sub/OR when branch is untaken/taken
CS425 - Vassilis Papaefstathiou

Delayed Branch

« Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots useful in
computation

— About 50% (60% x 80%) of slots usefully filled

» Delayed Branch downside: As processor go to deeper pipelines
and multiple issue, the branch delay grows and need more than
one delay slot

— Delayed branching has lost popularity compared to more expensive but
more flexible dynamic approaches

— Growth in available transistors has made dynamic approaches
relatively cheaper

Example: Evaluating Branch Alternatives

Pipeline depth

Pipeline speedup = 1 frequencyx Branch penalty

Deep pipeline in this example :
2 cycles for address (2 stalls)

Unconditional branch 4% o
Conditional branch. untaken s 1 more cycle to evaluate condition
Conditional branch, taken 10%
Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted untaken 2 0 3
Unconditional Untaken conditional Taken conditional
Branch scheme branches branches branches All branches
Frequency of event 4% 6% 10% 20%
Flush pipeline 0.08 0.18 0.30 0.56
Predicted taken 0.08 0.18 0.20 0.46
Predicted untaken 0.08 0.00 0.30 0.38

CS425 - Vassilis Papaefstathiou

37

Problems with Pipelining

- Exception: An unusual event happens to an instruction during its
execution
— Examples: divide by zero, undefined opcode

* Interrupt: Hardware signal to switch the processor to a new

Instruction stream

— Example: a sound card interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting)

* Problem (precise interrupt?): It must appear that the exception or
Interrupt happens between 2 instructions (1 and i +1)

— The effect of all instructions up to and including 1 is totaling complete
— No effect of any instruction after i can take place

* The interrupt (exception) handler either aborts program or restarts at
Instruction 1 +1

CS425 - Vassilis Papaefstathiou 38

Precise Exceptions in Static Pipelines

lbc Inst.
O Mem
&
Selett
Handler PC Address
PC Exceptions

Kill F
Stage

Commit
Point-
_ﬁ Data:
— Decode E| >+ M MemE —W
Iflegal '&' i '& Data Addr K',.’”é'
Opcode vertiow Except -

.
-

Kill D I KH'.I'E
Stage Stage

>

As ynchmnnus
Interrupts

Liteback

Cause

EPC

« Key observation: architectural state changes only in memory and

register write stages.

CS425 - Vassilis Papaefstathiou

39

Summary: Pipelining

» Speed Up < Pipeline Depth; if ideal CPl is 1, then:

Pipeline dep‘rh y CYCIe Timeunpipelined
1 + Pipeline stall CPT Cycle Time,;,.ined

Speedup =

« Hazards limit performance on computers:

— Structural: need more HW resources
— Data (RAW,WAR,WAW): need forwarding, compiler scheduling
— Control: delayed branch, prediction

« Exceptions, Interrupts add complexity

CS425 - Vassilis Papaefstathiou

40

